diary mlP06ratk.txt
Vektorien määrittely:
x =
1 2 3 4 5
y =
0 2 4 6
z =
-4 -2 0 2 4
Ekat laskut:
ans =
-4 -4 0 8 20
ans =
20
{??? Error using ==> mtimes
Inner matrix dimensions must agree.
}
Neliöt:
ans =
1 4 9 16 25
{??? Error using ==> mpower
Inputs must be a scalar and a square matrix.
}
Normit:
ans =
7.4162
ans =
7.4162
ans =
7.4162
help normx =
1 2 3 4 5
y =
0 2 4 6
z =
-4 -2 0 2 4
ans =
-4 -4 0 8 20
ans =
20
{??? Error using ==> mtimes
Inner matrix dimensions must agree.
}
x.*z
ans =
-4 -4 0 8 20
x
x =
1 2 3 4 5
z
z =
-4 -2 0 2 4
x.*z
ans =
-4 -4 0 8 20
x
x =
1 2 3 4 5
z'
ans =
-4
-2
0
2
4
x*z'
ans =
20
x
x =
1 2 3 4 5
z
z =
-4 -2 0 2 4
x*z
{??? Error using ==> mtimes
Inner matrix dimensions must agree.
}
ans =
1 4 9 16 25
{??? Error using ==> mpower
Inputs must be a scalar and a square matrix.
}
ans =
7.4162
ans =
7.4162
ans =
7.4162
help index
index not found.
Use the Help browser search field to search the documentation, or
type "help help" for help command options, such as help for methods.
com.mathworks.mde.find.FindFiles.invoke
epsi =
1.1102e-016
eps
ans =
2.2204e-016
epsi =
1.1102e-016
ans =
2.2204e-016
docsearch index
epsi =
1.1102e-016
ans =
2.2204e-016
EPS Spacing of floating point numbers.
D = EPS(X), is the positive distance from ABS(X) to the next larger in
magnitude floating point number of the same precision as X.
X may be either double precision or single precision.
For all X, EPS(X) is equal to EPS(ABS(X)).
EPS, with no arguments, is the distance from 1.0 to the next larger double
precision number, that is EPS with no arguments returns 2^(-52).
EPS('double') is the same as EPS, or EPS(1.0).
EPS('single') is the same as EPS(single(1.0)), or single(2^-23).
Except for numbers whose absolute value is smaller than REALMIN,
if 2^E <= ABS(X) < 2^(E+1), then
EPS(X) returns 2^(E-23) if ISA(X,'single')
EPS(X) returns 2^(E-52) if ISA(X,'double')
For all X of class double such that ABS(X) <= REALMIN, EPS(X)
returns 2^(-1074). Similarly, for all X of class single such that
ABS(X) <= REALMIN('single'), EPS(X) returns 2^(-149).
Replace expressions of the form
if Y < EPS * ABS(X)
with
if Y < EPS(X)
Example return values from calling EPS with various inputs are
presented in the table below:
Expression Return Value
===========================================
eps(1/2) 2^(-53)
eps(1) 2^(-52)
eps(2) 2^(-51)
eps(realmax) 2^971
eps(0) 2^(-1074)
eps(realmin/2) 2^(-1074)
eps(realmin/16) 2^(-1074)
eps(Inf) NaN
eps(NaN) NaN
-------------------------------------------
eps(single(1/2)) 2^(-24)
eps(single(1)) 2^(-23)
eps(single(2)) 2^(-22)
eps(realmax('single')) 2^104
eps(single(0)) 2^(-149)
eps(realmin('single')/2) 2^(-149)
eps(realmin('single')/16) 2^(-149)
eps(single(Inf)) single(NaN)
eps(single(NaN)) single(NaN)
See also realmax, realmin.
Overloaded methods:
codistributed/eps
qfft/eps
Reference page in Help browser
doc eps
A =
4 -5
2 1
b =
11
9
x =
4
1
ans =
11 11
9 9
A =
32 1
-40 1
B =
0
-40
ab =
0.5556
-17.7778
A =
32 1
-40 1
B =
0
-40
ab =
0.5556
-17.7778
ab =
5/9
-160/9
A =
32 1
-40 1
B =
0
-40
ab =
5/9
-160/9
ab =
5/9
-160/9
a =
5/9
b =
-160/9
{??? Undefined function or variable 'C'.
}
A =
32 1
-40 1
B =
0
-40
ab =
5/9
-160/9
ab =
5/9
-160/9
a =
5/9
b =
-160/9
ans =
[ C, (5*F)/9 - 160/9]
eps
ans =
1/4503599627370496
num2str(a)
ans =
0.55556
a
a =
5/9