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Foreword

The workshop ”Computational Problems in Physics” (CPiP) was held in Helsinki,
Finland, 23 - 27 May 2005, and this booklet contains the reports by the various
projects undertaken during the workshop. The organizers had several goals for
arranging the workshop. The first driving force came from their own research
experience: it often happens that physicists and numerical analysts tackle similar
problems, without knowing of each other’s efforts in the area. Physicists may bring
”real life”problems to the mathematicians, and mathematicians may have powerful
algorithms to solve these problems. The advantages of this cross-fertilization are
obvious.
Our hope was then to bring representatives from these two areas together thereby
enhancing the chances for these happy encounters. The second main goal was
to direct the workshop towards young researchers from both subfields. Skills to
communicate to and work together with specialists from a number of different
fields are at very high demand, and education towards this direction should start
as early as possible. The third goal was to make the students really work together,
and not just passively listen to talks given by experts. Therefore a special format
for the workshop was deviced, in which work-groups were formed, each working
an a specific problem suggested by physicists, and adviced by numerical experts.
To make the goals concrete for the work-groups it was decided that each group
deliver a short written report about their efforts during the workshop, and this is
the final outcome.
The specific projects span a wide spectrum of topics, and we give here a summary
in order to introduce the concrete problems discussed in the subsequent sections.
In many different quantum mechanical problems one is concerned with the solu-
tion of the time-dependent Schrödinger equation. Thus, Project 1 was defined as
”Propagators for quantum systems”. Using a physical problem arising from molec-
ular physics a number of propagation models were tested and compared for speed
and numerical accuracy. Project 2, ”Multiscale modeling of epitaxial growth” had
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its origins in a technological problem: in industrial applications one needs thin
crystalline films of high quality, and to achieve this, a detailed microscopic under-
standing of the film growth process is required. Here a diffusion type equation was
used to simulate the growth under far-from equilibrium situations, and the sta-
bility of resulting structures was analyzed. Project 3, ”Markov chains and Monte
Carlo simulations without detailed balance” studied the possibility of constructing
simulation schemes where the transition rates do not satisfy the detailed balance
condition, and analyzed the rate of convergence where certain generalized, alter-
native conditions are applied. Project 4, ”Electrohydrodynamic stability analysis
of two-phase flows in confining microsystems”, had again a very concrete engi-
neering background: how does an applied electric field affect the stability of the
interface between two immiscible liquids flowing in a microchannel? Both ana-
lytic and simulation techniques were applied to identify the possible instabilities.
Project 5, ”The reality of the compound solution in magnetohydrodynamics” dealt
with vastly different length scales: here the magneto-hydrodynamic equations rel-
evant for interstellar gas were analyzed; due to their non-strict hyperbolicity a
number of special complications arise (for example, uniqueness of the solution is
not guaranteed!), which were studied within a one-dimensional code written dur-
ing the workshop. Finally, Project 6, stemming from biophysics, looked at three
sub-tasks: a) Monte Carlo approach to DNA-breathing with two bubbles, b) (Bio)
Membranes, and c) DNA knots. A number of simulations were performed, and a
whole host of new approaches, algorithms, and untouched problems were identified
and discussed, as described in the reports.

As the organizers we are deeply impressed by the depth and range of the projects
that the students managed to complete during just a few afternoons and evenings
(well, also nights...). Of course this could not have taken place without the dedi-
cated and superbly professional help of all the senior participants, to whom we wish
to express our heartfelt thanks, as well as to all our younger colleagues who, with-
out counting working hours, took care of the local infrastructure, and guaranteed
a smooth running of the workshop.

In general, this was a very successful workshop, which can be read also from the
evaluation forms completed by the participants. Likewise, the senior participants
benefitted very significantly from the contacts and discussions with researchers
from other fields.

We thank our sponsors NordForsk, Nordita, and Finnish NGSMP for making this
first-of-its-kind workshop possible. The viabality of our concept and the enthusi-
asm of the researchers in this type of activity is proven by the fact that another
similar workshop with a slightly different focus is already being planned to take
place in Sweden in 2006.

Espoo and Copenhagen Timo Eirola
September 2005 Antti-Pekka Jauho
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Group 1
Propagators for Quantum Systems

Dan Bohr, Pablo Cornaglia, Sigŕıður Sif Gylfadóttir,
Paula Havu, Benny Lassen, Julia Schweitzer, Lasse Tunturivuori

Supervisors:
Marlis Hochbruck, Alexander Ostermann,

Martti Puska, Tapio Rantala

1 Introduction

The problem chosen by our group was to investigate different methods to solve the
time propagation of a many-body system in terms of one-electron evolution given
by

i
∂

∂t
ψi(x, t) = Ĥψi(x, t), (1)

where

Ĥ = −∇
2

2
+ vext(x, t) +

∫
dx′

n(x′, t)

|x− x′|
+ vxc[n(r, t)], (2)

and the electron density of the occupied states is given by

n(r, t) =
occ∑
i

|ψi(r, t)|2. (3)

This is the Kohn-Sham Schrödinger equation which is the basic equation of time-
dependent density-functional theory (for a review see Ref. [8]).
We decided almost immediately that the Hamiltonian given in equation (2) was too
difficult to use as a starting point for the investigation. We chose instead to begin
with as simple a Hamiltonian as possible, which still retained some connection
with a real quantum mechanical system. This we found in an article by Blanes
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and Moan [1]. In this article the following Hamiltonian is proposed to describe the
interaction of a diatomic molecule with a laser field:

Ĥ = − 1

2µ

∂2

∂x2
+ V (x) + xf(t), x ∈ [−0.8, 4.32], (4)

where

V (x) = D(1− e−αx)2,

f(t) = A cos(ωt),

and µ is the reduced mass, D the dissociation energy, α the length parameter
and A and ω are the amplitude and frequency of the laser field, respectively.
As boundary conditions we used two different conditions, Dirichlet and periodic
boundary conditions, depending on which was most convenient for the spatial
discretization employed. The freedom in choosing the boundary conditions stems
from the fact that the only physical requirement on the boundary is that the
wave function approaches zero at the boundary (we are only interested in bounded
solutions). When imposing periodic boundary conditions we need, of course, to
check that the wave function stays away from the boundary. The last thing needed
to have a well-posed problem is an initial condition. The usual condition chosen is
the ground state of the unperturbed system (time independent, f(t) = 0), which is
appropriate because we would expect the system to be in the ground state before
the laser field is turned on. The only problem with that is that we then needed
to find the ground state. Luckily, the ground state is known for the unperturbed
problem (Ref. [1]) and is given by

ψ0 = R e−βxe−γe−αx

, (5)

where γ = 2D/ω0, ω0 = α
√

2D/µ, β = (γ − 1/2)α, and R is a normalization con-
stant. But even if the ground state was not known there is a rather nice way to find
it, provided that the propagation of the unperturbed system (time-independent)
can be solved (we needed to solve the propagation of the perturbed system any-
way). The idea is to propagate the time independent system in imaginary time,
starting with a function that includes the ground state when expanded in the com-
plete set of solutions to the unperturbed system, remembering to normalize the
wave function continuously. This will eventually produce the ground state. The
reasoning goes as follows:
The starting function was chosen such that

ψ̃ =
∑

i

ciψi, (6)
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where c0 6= 0 (ψ0 being the ground state). This can, for example, be achieved
by using a multiple step function with random values for each step. The time
propagation of this function is known to be given by

ψ̃(t) =
∑

i

cie
−iEitψi. (7)

So when this function is propagated in imaginary time (−it) we see that

ψ̃(−it) =
∑

i

cie
−Eitψi. (8)

It is now evident that as time approaches infinity this function will approach the
ground state as long as it is normalized continuously.

In order to fix the material parameters, we chose to look at the HF molecule.
The parameters for this system are given in Table 1, where also the amplitude
and frequency of the laser field, that we have employed in all calculations, is given.
After we had agreed upon the model problem just described we decided to split the

µ D α A ω
Values 1745 a.u. 0.2251 a.u. 1.1741 a.u. 0.0011025 a.u. 0.193 · ω0

Table 1: Material and laser parameters for the system under investigation. Values
are given in atomic units (a.u.).

group into three subgroups, where each subgroup was charged with implementing
different time integration schemes (methods to solve the propagation of the time-
dependent system). The following schemes where chosen:

• Subgroup 1: Splitting of order 2 and 4

• Subgroup 2: Splitting of order 2 and Crank Nicolson

• Subgroup 3: Splitting of order 2 and Magnus integrator of order 2 and 4

The reason why all the subgroups were charged with implementing the splitting
scheme of second order was that we then had a way of checking whether or not
the different implementations were without errors, they could of course all have
the same error, but that would be highly unlikely.

In the following the above mentioned methods will be explained and results of the
implementations will be presented.
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2 The Crank-Nicolson method

The Crank-Nicolson method was implemented as suggested by Castro et al. [2].
Its derivation is as follows: The time-dependent Schrödinger equation has formally
the solution

ψ(t1) = ψ(t0)− i

∫ t1

t0

Ĥ(t)ψ(t) dt. (9)

The integral on the right-hand side is evaluated by the midpoint rule,

ψ1 = ψ0 − ih Ĥ

(
t0 + t1

2
,
ψ0 + ψ1

2

)
, (10)

where h = t1 − t0. Here we have introduced the notation Ĥ(t, ψ(t)) = Ĥ(t)ψ(t).
Further, in the general case with a nonlinear Hamiltonian, Ĥψ = Ĥ(t, ψ), the
Hamiltonian is approximated to

Ĥ

(
t0 + t1

2
,
ψ0 + ψ1

2

)
≈ 1

2

(
Ĥ(t0, ψ0) + Ĥ(t1, ψ1)

)
. (11)

In the simple case with only a Morse potential and a laser field, as we have in (4),
this relation is exact. For the (n+ 1):st step, this results in(

Id +
ih

2
Ĥ
(
t+ h

2

))
ψn+1 =

(
Id− ih

2
Ĥ
(
t+ h

2

))
ψn, (12)

where Id is the identity operator, Idψ = ψ. It is easily checked that this method
is unitary. Furthermore, the method is also symmetric.
The kinetic term of the Hamiltonian is approximated with finite differences. Let
us divide the x-axis into N + 1 points, all equally spaced with the spacing k. The
second derivative of ψm = ψ(xm) is approximated as

∂2ψm

∂x2
≈ ψm+1 − 2ψm + ψm−1

k2
, m = 1, . . . , N − 1. (13)

We choose Dirichlet boundary conditions, ψ(x0) = ψ(xN) = 0 in this method,
which gives

∂2ψ1

∂x2
≈ −2ψ1 + ψ2

k2
and

∂2ψN−1

∂x2
≈ ψN−2 − 2ψN−1

k2
. (14)

In coordinate space, the kinetic term is, thus, represented by a tridiagonal ma-
trix. Further, in this space, the potentials have a diagonal representation, whence
the total Hamiltonian sums up to a tridiagonal matrix. This makes the linear
system (12) rather easy to solve compared to a system with a full matrix.
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Figure 1: The convergence of the Crank-Nicolson scheme with respect to the time
step, compared to Strang Splitting.

The convergence of the Crank-Nicolson method is compared with Strang splitting
in Figure 1. We see that Crank-Nicolson shows second order behaviour, as well as
Strang splitting does, and that the errors due to time propagation are very close
to those of Strang splitting.

Another source of error is the finite difference grid. It induces an error, which
decreases quadratically when the number of grid points is increased, which is shown
in Figure 2.
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Figure 2: Error of the lowest eigenvalue induced by the finite grid.
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3 Exponential Operator Splitting

We consider the time-dependent Schrödinger equation,

∂ψ(x, t)

∂t
= −iĤ(x, t)ψ(x, t) (15)

in one dimension. The purpose of this section is to show the split operator approach
to solving the time dependence, and in particular consider the symmetric Strang
splitting which is of second order, and a simple extension of that method to 4th
order.

3.1 Second Order Splitting Methods

Formally the time evolution can be formulated in terms of the time evolution
operator re-expressed on a finite time grid ti as

Û(t, 0) = T e−i
R t
0 dτĤ(τ)

=
N−1∏
i=0

Û(ti + ∆ti, ti), (16)

where T denotes time ordering and the ‘infinitesimal’ time evolution operators are

U(ti + ∆ti, ti) = T e−i
R ti+∆t

ti
dτĤ(τ). (17)

Dividing the Hamiltonian into a kinetic part, T̂ , and a potential part, V̂ , we face
the problem of expressing the exponential of the operator Ĥ. The split operator
scheme does this simply by neglecting the fact that T̂ and V̂ do not commute.
The philosophy is that the solution to the complicated differential equation can
be approximated by the (hopefully) less complicated partial flows. Neglecting for
notational simplicity the spatial dependence of the wave function and focusing only
on the time dependence this amounts to considering

ψ̇(t) = −iT̂ (t)ψ(t)− iV̂ (t)ψ(t) ⇒
ψ̇T (t) = −iT̂ (t)ψT (t) → ψT (t+ ∆t) = e−i

R t+∆t
t dt′T̂ (t′)ψT (t), (18)

ψ̇V (t) = −iV̂ (t)ψV (t) → ψV (t+ ∆t) = e−i
R t+∆t

t dt′V̂ (t′)ψV (t), (19)

and thereby the approximation for small time steps ∆t

ψ(t+ ∆t) ≈ e−i
R t+∆t

t dt′T̂ (t′)e−i
R t+∆t

t dt′V̂ (t′)ψ(t), ∆t� 1. (20)
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The expression in Eq. (20) is in agreement with the infinitesimal time evolution
operator in Eq. (17) for time independent Hamiltonians, or for sufficiently small
time steps ∆t, ∫ ti+∆t

ti

dτĤ(τ) ≈ ∆tĤ(t∗i ), (21)

where t∗i typically is chosen as either an endpoint or the midpoint of the time
interval. Thus using the approximation in Eq. (20) we find the time evolution
operator

e−i
R ti+∆t

ti
dτĤ(τ) ≈ e−i∆tT̂ (t∗i )e−i∆tV̂ (t∗i ), t∗i ∈ [ti, ti + ∆t]. (22)

This approximation is correct to first order in ∆t and can be improved considerably
by choosing the splitting in a symmetric fashion, the so-called Strang splitting,

e−i
R ti+∆t

ti
dτĤ(τ) ≈ e−i∆t

2
T̂ (t∗i )e−i∆tV̂ (t∗i )e−i∆t

2
T̂ (t∗i ), t∗i ∈ [ti, ti + ∆t], (23)

which is correct to second order in ∆t.

These splitting schemes are easy to evaluate since we have split the kinetic and
potential parts of the Hamiltonian completely, and a diagonal basis can be chosen
for each part separately, usually k-space and real space respectively. For instance
the Laplacian in Eq. (15) can be solved by Fast Fourier Transformation (FFT),
and one then needs to inverse FFT to get back to the real space basis, where V̂ is
diagonal. The numerical procedure can be illustrated as follows

ψ̃(p, t+ ∆t) = e−i∆t
2

T̂fft
[
e−i∆tV̂ ifft

[
e−i∆t

2
T̂ ψ̃(p, t)

]]
, (24)

where ψ̃(p, t) denotes the Fourier transform of the wave function and where time
arguments of T̂ and V̂ where neglected for notational simplicity. Thus two Fourier
transforms are needed at each timestep, making the method scale as O(N logN)
(slightly superlinearly) with the size of the basis used (e.g. spatial grid). When N
is very large, methods which rely on LU factorization of the Hamiltonian matrix,
such as the Crank-Nicolson scheme discussed in the previous section, become very
slow since they scale as O(N2) .

3.2 Committed error per time step

Both the standard second order splitting in Eq. (22) and the symmetric splitting
in Eq. (23) neglects the commutator [T̂ , V̂ ] as well as higher order commutators.
The error committed at each such small time step by each of the above splitting
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schemes can be found by simply expanding the exponential and canceling terms
(ignoring for simplicity the factor −i),[

e∆t(T̂+V̂ ) − e∆tT̂ e∆tV̂
]
≈ ∆t2

2

[
T̂ , V̂

]
+O(∆t3), (25)

[
e∆t(T̂+V̂ ) − e

∆t
2

T̂ e∆tV̂ e
∆t
2

T̂
]
≈

∆t3

12

{1

2

[
T̂ ,
[
T̂ , V̂

]]
−
[
V̂ ,
[
V̂ , T̂

]]}
+O(∆t4). (26)

Thus the split operator is correct to first order in ∆t, while the symmetric Strang
Splitting is correct to second order. This provides the rationale for the somewhat
strange splitting in Eq. (23).

3.3 Fourth order splitting methods

In the last section we have described Strang splitting, a second order time inte-
gration method which uses the fast Fourier transform to simplify the application
of the time propagator. Now we will discuss a simple extension of the method to
higher orders.
If one has a symmetric splitting method of order 2k > 0, ϕ2k(∆t), e.g. Strang
splitting

ϕ2(∆t) = e−iT̂ ∆t
2 e−iV̂ (t+∆t/2)∆te−iT̂ ∆t

2 , (27)

then a symmetric method of order 2k+ 2 can be constructed in the following way
[9]

φ2k+2(∆t) = ϕn
2k(α∆t)ϕm

2k(β∆t)ϕn
2k(α∆t). (28)

The four parameters α, β, n, m must satisfy two constraints

2nα +mβ = 1

2nα2k+1 +mβ2k+1 = 0.
(29)

In this splitting scheme, β is always negative, meaning that it involves stepping
backwards in time. Although the method is of higher order, it clearly requires
more work, since a greater number of steps (3k) is needed per time step. There
exist different splitting schemes of the same order which involve fewer steps (see
e.g. [3]), at the cost of having to keep track of all commutators of T̂ and V̂ up to
the order of the method.
Since we have only two constraints for four parameters, two of them can be chosen
freely. It has been found [9] that the best choice of m is always m = 1, and that
the work to achieve a given error decreases with n up to n = 19.
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In the case where ϕ2k(∆t) is given by (27), k = 1 and we obtain a fourth order
method. In order to keep the implementation simple, we chose n = m = 1.
Although n = 1 is not the best choice, the method involves fewer steps. The wave
function at time t is then propagated according to

ψ(t+ ∆t) = ϕ2(α∆t)ϕ2(β∆t)ϕ2(α∆t)ψ(t). (30)

It is a three step process, where each step is identical to that described in the
previous section. If an external time dependent potential is included (V̂ = V̂ (t)),
it is evaluated at the center of each interval the wave function is propagated by.
In this case we would have

ψ(t+ ∆t) = e−iT̂ α∆t
2 e−iV̂ (t+α∆t+β∆t+α∆t/2)α∆te−iT̂ α∆t

2

× e−iT̂ β∆t
2 e−iV̂ (t+α∆t+β∆t/2)β∆te−iT̂ β∆t

2

× e−iT̂ α∆t
2 e−iV̂ (t+α∆t/2)α∆te−iT̂ α∆t

2 ψ(t)

(31)

The fourth order splitting requires approximately 3 times as much work as the
symmetric Strang splitting. It still scales as O(N logN) with the basis size.

3.4 Numerical convergence of implementation

To show the performance of our implementation of the split operator methods,
we have in Fig. 3 plotted the deviation from a reference solution (found with a
very small timestep) of the wave function (ε = ||ψref − ψ||2) versus the length of
the timestep. For reference, the figure includes a straight line corresponding to a
second and fourth order decay of the error. The error does decrease according to
the order of the methods, although for the fourth order splitting the error decrease
slows down at the smallest timesteps. Note that the plot does not show anything
about the actual error of the calculation, it only shows the convergence of the time
evolution.

4 Magnus Integrator for the Schrödinger equa-

tion

We are interested in solving numerically the time dependent Schrödinger equation:

iψ̇(t) = H(t)ψ(t), ψ(0) = ψ0. (32)

In what follows we briefly present the theoretical basis for Magnus Integration using
both Krylov subspace decomposition and Padé approximations of the exponential.
In the final subsection we comment on the details of our implementation and
present the error of the wave function ψ(t) as a function of the integration time
step.
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Figure 3: Error of the time evolved ground state wave function with respect to
numerical reference solution as a function of timestep length ∆t.

4.1 Magnus Integrators

In the Magnus approach [7, 6, 4], the solution of (32) is formally written as

ψ(t) = exp(Ω(t))ψ0, (33)

for a suitable matrix Ω(t). If [H(t1), H(t2)] = 0 for all t1, t2 > 0 (e.g. if H(t) is
scalar), Ω(t) is simply given by

Ω(t) = −i
∫ t

0

H(τ)dτ. (34)

In the general case a differential equation for Ω(t) can be derived

Ω̇(t) = A(t)− 1

2
[Ω(t), A(t)] +

1

12
[Ω(t), [Ω(t), A(t)]] + · · · , (35)

where A(t) = −iH(t).
Solving Eq. (35) using Picard iteration yields the Magnus expansion

Ω(t) =

∫ t

0

A(τ)dτ − 1

2

∫ t

0

[

∫ τ

0

A(σ)dσ,A(τ)]dτ + · · · (36)
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which is convenient for numerical approximations. Different numerical methods
can be derived by truncating the series at different points as well as approximating
the integrals by using different quadrature rules.

A second order rule is obtained truncating the series in (36) after the first term
and using the midpoint rule to approximate the integral:

Ωn = −i∆tH(tn + ∆t/2) (37)

Keeping up to the second term of the right hand side in (36) and using a two-point
Gauss quadrature rule yields

Ωn = − i
∆t

2
[H(tn + c1∆t) +H(tn + c2∆t)]

+

√
3∆t2

12
[H(tn + c1∆t), H(tn + c2∆t)]

where c1,2 = 1/2∓
√

3/6, which is a fourth order scheme.

The approximation at the new time step tn+1 = n∆t is then obtained by calculating

ψ(tn+1) ≈ ψn+1 = exp(Ωn)ψn. (38)

In the case of unbounded operators H(t), the order statements must be taken with
caution. It turns out (for a short review see Ref. [6]) that this method retains
fourth order accuracy in the situation H(t) = T + V (t) with T a discretization of
the negative Laplacian and V (t) a smooth potential under the time step condition
∆t
√
Emax ≤ constant, where Emax is the maximum eigenvalue of the Laplacian

Emax ∼ ∆x−2.

4.2 Krylov subspace decomposition

The next step is to calculate the product of the exponential of a matrix times a
vector that appears on the right hand side of Eq. (38). An efficient approach for
approximation of the product of a matrix exponential times a vector,

ψn+1 = exp(Ωn)ψn , (39)

is using the Lanczos process [5, 11]. The symmetric Lanczos process generates
recursively an orthonormal basis Vm = [v0 . . . vm−1] of the m–th Krylov subspace
Km(Ω, ψ) = span(ψ,Ωψ, . . . ,Ωm−1ψ), such that

ΩVm = VmLm + [0 · · · 0 βmvm]. (40)
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Lanczos Algorithm:
First iteration:

v0 = ψ/‖ψ‖,
w1 = Ωv0,
α0 = wT

1 v0,
v1 = w1 − α0v0,
β1 = ‖v1‖,
v1 = v1/β1,

Following iterations (i ≥ 1):
wi+1 = Ωvi,
αi = wT

i+1vi

vi+1 = wi+1 − αivi − βivi−1,
βi+1 = ‖vi+1‖,
vi+1 = vi+1/βi+1,

Table 2: Symmetric Lanczos algorithm

The algorithm starts with the starting vector ψ and builds up the orthogonal basis
Vm of the Krylov subspace one column at a time. In each step just one matrix-
vector multiplication is needed. In the new orthogonal basis Vm the operator Ω is
represented by a real symmetric tridiagonal matrix,

Lm =


α0 β1

β1 α1
. . .

. . . . . . βm−1

βm−1 αm−1

 , (41)

which is also built up one row and column at a time, using the basic recursion
given in Table 2.
The real, tridiagonal, and symmetric matrix Lm = V T

m ΩVm is the orthogonal pro-
jection of Ω into Km(Ω, ψ). The product of the exponential times the vector is
calculated using

exp(−i∆tΩ)ψ ' Vm exp(−i∆tLm)‖ψ‖e1, (42)

where ‖ · ‖ denotes the Euclidean vector norm and e1 is the first canonical unit
vector.
The matrix exponential exp(−i∆tLm) can be computed cheaply using the decom-
position Lm = QmDmQ

T
m, with Dm diagonal, and

exp(−i∆tLm) = Qm exp(−i∆tDm)QT
m. (43)
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The criterion for stopping the Lanczos process is that

βm|[exp(−i∆tLm)]m,m| < tol, (44)

where tol is a user defined tolerance. This method requires m multiplications of
Ω with a vector, where m is in in general much smaller than the dimension of the
problem.

4.3 Padé approximations

An alternative way of calculating the exponential is using a rational approximation
[10].

e−z ≈ Rm,n(z) =
Pm(z)

Qn(z)
, (45)

where Pm(z) and Qn(z) are polynomials of degree m and n with coefficients {ρk}
and {σk} respectively

Pm(z) =
m∑

i=0

ρiz
i, Qn(z) =

n∑
i=0

σiz
i (46)

The unknown coefficients of Rm,n can be determined from the condition that the
first (m+ n+ 1) terms vanish in the MacLaurin series

Qn(z)e−z − Pm(z) = 0. (47)

Substituting the two polynomials into this expression and equating the coefficients
leads to a system of m+ n+ 1 linear homogeneous equations which can be solved
recursively for the coefficients.

4.4 Implementation and Results

We implemented the second order as well as a fourth order Magnus integrator both
by using Krylov subspace decomposition as described in subsection 4.2 and calcu-
lating the exponential of the full matrix Ωn directly. In order to use a Fourier spa-
tial discretization including fast Fourier transforms, we implemented a matrix–free
Krylov–subspace algorithm. In the latter case, to calculate the matrix exponential
directly we used the expm routine of Matlab which uses Padé–approximations and
whose implementation corresponds to method 3 of Ref. [10].
For the examples originally studied the time dependence was too weak to be able
to obtain the order of the methods. This is due to the fact that the Magnus
integration is exact for time independent Hamiltonians. To be able to observe the
error behavior we increased the influence of the time dependent potential using a
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Figure 4: The error is plotted vs. time step size for the laser example with much
larger laser frequency and amplitude. Magnus 2 (solid + diamonds) approximately
matches the second order line (dashed), Magnus 4 (solid + circles) approximately
matches the fourth order line (dash–dotted).

larger laser frequency of 2 instead of 0.0036 and an amplitude of 0.5513 instead of
0.0011.

In Fig. 4 we present the error on the wave function

E = ‖ψref
n − ψn‖, (48)

as a function of the time step, where ψref
n is a reference solution. Both integrators

show the expected error behavior.

5 Conclusions

Our group has considered time evolution methods for quantum systems. Due to
the limited duration of the workshop we considered the simple one-dimensional
problem given by the Hamiltonian in Eq. (4). Subgroups were formed to con-
sider different integration schemes of second and fourth order and generally the
expected convergence of the implementations was found. We have found that the
Strang splitting, Crank-Nicolson, and second-order Magnus integration methods
show quadratic convergence. Strang splitting scales better than Crank-Nicolson,
since the FFT:s scale as O(N logN), whereas the solution of the linear equation
system of Crank-Nicolson scales as O(N2). The fourth-order splitting and Magnus
integration methods show fourth-order convergence. The splitting scheme scales
as O(N logN).
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Due to the limited time we did not manage to consider any non-linear Hamiltonian
in any detail. This would be the obvious continuation of the presented work
since the majority of interesting problems in physics are non-linear. Such work
would provide further experience about performance and scalability of the various
methods considered. For non-linear problems the optimal convergence that we
found for the linear problem is no longer expected and more thorough investigation
of the various methods is needed to determine the optimal method for a given
problem.
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Group 2
Multiscale modeling of epitaxial growth

Mikko Byckling , Heikki Junes , Tommi Järvi ,
Sampsa Pursiainen , Axel Voigt

1 Introduction

This work concerns epitaxial growth, which is a modern technology of growing
single crystals that inherit atomic structures from substrates. Modeling epitax-
ial growth is a challenging computational problem, since the growth process in
macroscopic scale results from atomic processes in microscopic scale. The micro-
scopic processes in epitaxial growth include the deposition of separate atoms or
molecules on the terraces, adatom (adsorbed atom) desorption from and diffusion
on the terraces as well as the attachment and detachment of adatoms to and from
the steps.
For example, in the microprocessing industry, ability to grow thin films with good
structure is of great importance. To precisely control the growth process requires
a good knowledge of the atomic processes of the surface and the ability to simulate
them. However, the simulation of the atomic processes is not usually able to reach
time and length scales of interest for device applications.
On the surface of a grown crystal, atomic steps separate terraces that differ in
height by a single lattice spacing. The movement of well-separated steps on a
crystal close to equilibrium is classically described with the BCF model [1]. Typical
unwanted growth behaviors which may show up in epitaxial growth are bunching
and meandering of the terrace step edges, see Fig. 1. As one hopes to form a
crystal which has as much regularity as possible, there is a need to simulate the
terrace growth and the step movement as accurately as possible.
In this work, it is shown how a macroscopic continuum model of epitaxial growth
can be constructed from the atomic processes. Both equilibrium and non-equilibrium
models are discussed. The theory is formulated in terms of densities of adatoms ρ,
kinks k and edge atoms ϕ that are defined to be those atoms which are bound to
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meandering

bunching

Figure 1: Bunching and meandering of steps.

a step edge but still move along the step. The dynamics of epitaxial growth at a
microscopic level is specified in terms of diffusion coefficients. The macroscopic be-
havior of the growth process is modeled through a diffusion equation with boundary
conditions which are derived directly from the microscopic processes.
Particular interest is paid on the following phenomenon: Experiments show that
the attachment of an adatom to a step down is penalized compared to the attach-
ment to a step up. In order to attach to a step from the upper terrace, an adatom
must overcome an energy barrier known as the Ehrlich Schwoebel barrier. This
phenomenon is studied by solving the adatom density numerically with different
assumptions on the microscopic diffusion coefficients.
For a review on kinetic models in epitaxial growth see [2].

2 Terrace-step-kink model

2.1 Macroscopic fluxes

The adatom diffusion equation on a terrace i is

∂tρi −DT∇2ρi = −τ−1ρi + FT −MT (49)

where ρi is the adatom density on terrace, and DT is the adatom diffusion coeffi-
cient on a terrace, τ−1 is the desorption rate, FT is the deposition flux rate onto
the terrace, and MT is the loss due to nucleation of adatom islands.
The velocity vi of a step is determined by macroscopic fluxes of adatoms onto the
step in the upper and lower terraces, fi,+ and fi,−. Their boundary conditions on
the step are

−DT∇ρi · ~ni − viρi = fi,+, (50)

DT∇ρi−1 · ~ni + viρi−1 = fi,−, (51)

24



where ~ni is the outer normal of the step. The adatom diffusion equation on an
edge i is

∂tϕi −DE∂
2
sϕi = FE,i −ME,i, (52)

where ϕi is the adatom density on edge, and DE is the adatom diffusion coefficient
on an edge, FE,i is the net flux rate onto the edge, and MT,i is the loss of adatoms
due to nucleation of kink pairs.
Kink density k on a step i evolves as

∂tki + ∂s [wi (ki,r − ki,l)] = 2 (gi − hi) , (53)

where wi is the kink velocity, ki,r and ki,l are the right- and left-kink densities with
ki = ki,r + ki,l, gi is the gain due to nucleation of kink pairs, and h is the loss due
to annihilation of kinks.

2.2 Microscopic fluxes

Macroscopic fluxes are obtained from a kinetic model describing different micro-
scopic processes between adatoms, step adatoms, and kinks. The macroscopic
fluxes f± in Eq.s (50) and (51) are

f± = (f±1 + f±2 + f±3 + f±4 ) cos(θ), (54)

where θ is the angle of the step with respect to [100] direction, and f±j are the
microscopic fluxes presented in Fig. 2. We derived these fluxes using the same
prescription as in [3], but considering a greater density of adatoms on the terrace
and on the edge.
To give an example of the construction of the fluxes, let us write the expressions
for the two processes in Fig. 3. In the process on the left, a terrace adatom jumps
to an edge adatom. Leaving out the index i and denoting the adatom density on
the (upper) terrace below the line simply by ρ+, the flux can be written as

a2ρ+(1− ak)2D+
TEa

−2a−1(1− aϕ), (55)

where the factors, reading from the left and ignoring the lattice constant, are the
probability to have an adatom on the terrace and to have no kinks on the edge,
the diffusion constant of this process, and the probability to have no adatom on
the edge already present. Similarly, the other process can be written as

aϕ(1− ak)2D+
ETa

−2a−1(1− a2ρ+), (56)

where the last factor is again the correction added in this work, and takes into
account the possibility of already having an adatom on the terrace. These cor-
rections are significant when the adatom densities are large, and hence may be
required in non-equilibrium cases.
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Figure 2: Microscopic processes contributing to the fluxes. The dark and light
squares represent terrace and edge adatoms, respectively. The terrace drawn below
the edge line is the higher one. Two adjacent adatoms form a pair of kinks of the
edge.
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Figure 3: The simplest adatom diffusion processes between a terrace and an edge.

In conclusion, the corrections are embodied in the factors (1−a2ρi) and (1−aϕi),
and they rescale the diffusion coefficients DXY to the forms in square brackets
below. The fluxes between the edge and the upper (’+’) terrace are

f+
1 = (1− aki)

(
[D+

TE(1− aϕi)]aρi − [D+
ET (1− a2ρi)]ϕi

)
a−2,

f+
2 = 2 (1− aki)

2 ki

(
D+

TKρi − [D+
KT (1− a2ρi)]a

−2
)
,

f+
3 = 2 (1−aki)

(
D+

TKa (1−aki)
2ρiϕi − [(1−aϕi)D

+
KT (1−a2ρi)]ki,lki,r

)
a−1,

f+
4 = 3

(
D+

TBaρiki,lki,r − [D+
BT (1− a2ρi)] (1− aki)

2 a−3
)
,

where a is the lattice constant, and D+
XY are the diffusion coefficients that indicate

hopping from X to Y , with X, Y indicating terrace (T ), edge (E), kink (K), or
bulk (B). Similarly, the fluxes between the edge and the lower (’-’) terrace are

f−1 =
(
1− a2k2

i

) (
[D−

TE(1− aϕi)]aρi−1 − [D−
ET (1− a2ρi−1)]ϕi

)
a−2,

f−2 = (1− aki)
2 ki

(
D−

TKρi−1 − [D−
KT (1− a2ρi−1)]a

−2
)
,

f−3 = 2 (1−aki)
(
D−

TKa (1−aki)
2ρi−1ϕi−[(1−aϕi)D

−
KT (1−a2ρi−1)]ki,lki,r

)
a−1,

f−4 = D−
TBaρi−1ki,lki,r − [D−

BT (1− a2ρi−1)] (1− aki)
2 a−3.

And, the fluxes along the edge are

f 0
+ = (1− aki)

2 ki

(
D+

EKaϕi − [D+
KE(1− aϕi)]

)
a−2,

f 0
− = (1− aki)

3 ki

(
D−

EKaϕi − [D−
KE(1− aϕi)]

)
a−2,

f 0
0 = 2 (1− aki)

(
D+

EBki,lki,rϕi − [D+
BE(1− aϕi)] (1− aki)

2 a−3
)
,

m0 = 4 (1− aki)
2 (D−

EK (1− aki)
2 ϕ2

i − [D−
KE(1− aϕi)

2]ki,lki,r

)
a−1.
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In terms of the microscopic fluxes, the quantities FE,i and ME,i in Eq. (52) are

FEi,i = cos(θi)(f
+
1 + f−1 + f 0

+ + f 0
− + f 0

0 )

ME,i = cos(θi)(f
+
3 + f−3 +m0),

and the quantities wi, gi, and hi in Eq. (53) are

wi =
a

ki

(f 0
+ + f 0

− + f+
2 + f−2 ),

gi =
1

2
m0 + f+

3 + f−3 ,

hi = f+
4 + f−4 + f 0

0 .

2.3 Equilibrium and detailed balance

To obtain the equilibrium values, we require the detailed balance condition. That
is, all the microscopic fluxes separately vanish,

f±1
i = f 0

0,± = m0 = 0. (57)

This results in equilibrium conditions,

ρi =
([
D±

ET (1− a2ρi)
]
/
[
D±

TE(1− aϕi)
])
ϕia

−1

ρi =
([
D±

KT (1− a2ρi)
]
/D±

TK

)
a−2

ρi =
([

(1− aϕi)D
±
KT (1− a2ρi)

]
/D±

TK

)
ki,lki,r/(1− aki)

2/ϕia
−1

ρi =
([
D±

BT (1− a2ρi)
]
/D±

TB

)
(1− aki)

2/(ki,lki,r)a
−4

ϕi =
(
D±

KE/
[
(D±

KE) +D±
EK

])
a−1

ϕi =
([
D+

BE(1− aϕi)
]
/D+

EB

)
(1− aki)

2/(ki,lki,r)a
−3

ϕ2
i =

([
D−

KE(1− aϕi)
2
]
/D−

EK

)
ki,lki,r/(1− aki)

2,

from which the second and fifth conditions yield the equilibrium adatom density
on terraces, ρi = ρeq, and on steps, ϕi = ϕeq,

ρeq =
(
D±

KT/D
±
TK

)
/
[
1 + (D±

KT/D
±
TK)
]
a−2

ϕeq =
(
D±

KE/
[
(D±

KE) +D±
EK

])
a−1,

and fifth and seventh condition with ki,l = ki,r = 1
2
ki yield the equilibrium density

of kinks, ki = keq,

keq =
1

a

(
1 +

√
D±

EK/D
±
KE

2

)−1

, (58)

which is in agreement with BCF theory [1] for the case when the height of kinks
is limited to ±1.
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3 Planar steady-state solution

In this section, it is shown how the microscopic fluxes can be used to derive a planar
quasi-steady-state solution. In the following computations, it is assumed that the
crystal surface consists of a periodic sequence of steps which are separated by
distance L that move at velocity v towards the normal direction of the step edges
([010] direction).
By making a quasi-steady state approximation, neglecting nucleation of the two-
dimensional islands on terraces as well as desorption and applying the requirements
for detailed balance, the diffusion equation becomes

−DT∇2ρ = F. (59)

The solution is the adatom density ρ, which is given by

ρ(x, t) = − F

2DT

(
(x− vt)2 − L2

)
+ C1(x− vt) + C2 (60)

where C1 = (ρ+ − ρ−)/2 and C2 = (ρ+ρ−)/2 are unknown coefficients. The
densities ρ+ and ρ− are the adatom densities on the terrace edges. Coefficients C1

and C2 can be solved from the boundary conditions

Ψ(k, ϕ, ρ+, ρ−) =


DTC1 − FL+ f+

DTC1 + FL− f−
f+

1 + f−1 − f0 −m
g − h

 = 0, (61)

where f±j are the microscopic fluxes,m = (m0+f+
3 +f−3 ) cos(θ), g = m0/2+f+

3 +f−3 ,
h = f+

0 + f−4 + f 0
0 and f0 = (f 0

+ + f 0
− + f 0

0 ) cos(θ). This is a non-linear system of
equations that can be solved numerically by using the Newton’s method

xi+1 = xi −∇Ψ(xi)−1Ψ(xi), (62)

where ∇Ψ(xi)−1 is the inverse of the Jacobian matrix of Ψ evaluated at the point
xi = (ki, ϕi, ρi

+, ρ
i
−).

3.1 Results

The system is solved numerically with F = 0.1, L = 1000, DE = 1 · 105, DT =
1 · 1012 and θ = 0, which corresponds to the condition that the terrace edges
are parallel and perpendicular to the direction of propagation [010]. The terraces
are assumed to be ordered so that lower terrace levels are found as x in Eq. (60)
increases. The diffusion constants are chosen as

D−
XY = DX

D+
XY = (1− β)DX
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forXY = {ET, TE, TK,KT, TB,BT} andD±
XY = DX forXY = {EB, BE,EK,KE}.

The parameter β ∈ [0, 1] defines the bias between the diffusion constants and by
varying it one can control the level of Ehrilch Schwoebel effects. Three values
β = {0, 0.99, 1} were tested in the calculation of the steady-state distribution.

The solution in Fig. 4 was computed by applying Newton iteration in Eq. (62).
Figure 5 shows the convergence behavior of the method.

4 Conclusions

The modified microscopic fluxes make the terrace-edge-kink model more useful
in far-from-equilibrium situations. In a high density of adatoms on the terraces
and edges, one has to take into account, for example, whether there is already an
adatom on the terrace to which an adatom diffuses from the edge. As a result, the
diffusions rates between the terrace, edge, and kinks slightly rescale into smaller
values.

In the detailed balance of the microscopic fluxes, the equilibrium density of adatoms
on terrace, ρeq, edge, ϕeq, and kinks, keq, were calculated. The correction which
was made to the microscopic fluxes decreased ρeq and ϕeq, but retained keq the
same.

The numerical experiments yield qualitatively three different kind of steady-
state solutions. When β is chosen to be zero the solution curve tilts towards the
right terrace edge so that there is a positive flux of adatoms to the next (lower)
terrace but the flux to the previous (upper) terrace is close to zero. This condition
causes typically bunching of the terraces.

In the second case, where β = 0.99, the fluxes to both directions are close in
magnitude. Since the differences are clearly smaller than in the first case, this
condition will cause a more stable structure of the terraces.

When β = 1 there is a flux to the negative direction, which will easily cause
meandering of the terraces. Meandering is constant variation of the terrace edges
in shape and distance.

In industrial applications, one usually wants to make the growth of the lattice
stable. Therefore bunching and meandering are often classified as unwanted phe-
nomena. Within this interpretation the choice β = 0.99 is close to the optimal
value for the bias parameter. However, it is difficult to control the growth param-
eters with present techniques. One way to possibly control the bias in diffusion is
to grow the crystal in an electrical field.
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Figure 4: Planar steady-state adatom density on a terrace between x = 0 . . . 1000.
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Group 3
Markov Chains and Monte Carlo Simulations

Without Detailed Balance

Students: Simo Ali-Löytty, Christian Flindt, Anders Hansson,
Mika Jahma, Mads Jensen, Laura Koponen, and Erik von Schwerin

1 Introduction

A Markov chain is a stochastic process with no memory, that is, the probability of
the system being in a state depends only on the probability of being in a previous
state. The Monte Carlo (MC) simulation method is based on the theory of stochas-
tic Markov chains. In a MC simulation, the configuration of the system of interest
is changed by a series of random moves. The moves form a Markov chain such that
a desired probability distribution is achieved. Since its introduction in 1953 [1] the
Markov chain Monte Carlo method has been widely used in versatile applications,
especially in estimating average properties of many-body systems with a very large
number of accessible states with either discrete or continuous degrees of freedom.
Let us consider a system with discrete and finite number of states {i}. Let us
assume that the system is in a canonical ensemble. That means that the limiting
distribution of the Markov chain is the Boltzmann distribution

p∗i = exp−βEi/Z, (63)

where Ei is the energy of the state i, Z is the partition function (normalization)
and β = 1/kBT is the inverse temperature of the system.
Let the vector p∗ denote the desired equilibrium probability distribution of the
states, satisfying Pp∗ = p∗. The matrix P is the transition matrix. Its entries Pij

are the transition probabilities from the state i to the state j.
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The temporal evolution of a Markov chain starting from some initial state p0 is
governed by the Master equation

∂pi

∂t
= −

N∑
j=1

[wijpi − wjipj], (64)

where wij = Pij/τ are the transition rates. For simplicity, we assume the arbitrary
transition time to be scaled to τ = 1. By setting each term in Eq. (64) individually
to zero we get the usual detailed balance condition (DBC)

Pijp
∗
i = Pjip

∗
j (65)

If the DBC is enforced, it is easy to use it to construct any desired probability
distribution. One such simple scheme is the Metropolis MC simulation. The
algorithm reads:

0. Start from an initial configuration i(0)

1. Move by random δ: ĩ = i(t = k) + δ

2. Accept the move with probability min(1, p(̃i)/p(i(k)))

3. If accepted, i(k + 1) = ĩ; if not, i(k + 1) = i(k)

4. Return to 1.

The DBC is obviously a sufficient but not necessary condition in a MC simulation,
because there is no fundamental reason why each transition should pairwise satisfy
Eq. (65). In fact, there are many MC methods in wide use that do not satisfy the
DBC, such as the sequential updating of spins in the Ising method.

2 Monte Carlo simulations without detailed bal-

ance

As stated above, it is clear that the detailed balance is only a sufficient condition,
not necessary, and as shown by Manousioutakis and Deem the detailed balance
is an overly strict condition to ensure a valid Monte Carlo simulation [2]. This
observation has been exploited by several authors in order to develop more efficient
Monte Carlo algorithms.
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2.1 Proposal for speed-up

In the following we consider a recent proposal put forward by Frenkel for speeding
up Monte Carlo simulations by sampling of rejected states [3]. The Metropolis
algorithm is based on the generation of trial moves from the current state (i) to
a new state (j), e.g. the flip of a spin on a single site leading to a new Ising
configuration. Imposing the detailed balance condition as expressed in Eq. (65),
the probability for accepting the new state can be chosen as 1

Pji = min

{
1,
pstat

j

pstat
i

}
. (66)

The detailed balance condition ensures that each state is visited with a frequency
corresponding to the desired distribution contained in p∗, e.g. the Boltzmann dis-
tribution for classical systems in thermal equilibrium. Consequently, at the end of
the simulation the expectation value of interest 〈A〉 can be approximated by an
unweighted average over visited states, i.e.

〈A〉 '
∑

iNiAi∑
iNi

. (67)

Here Ai is the value of the stochastic variable A in the state i, and Ni is the number
of times that the state i was visited during the simulation. The sum runs over all
states visited during the simulation. The total number of visits N =

∑
iNi should

be chosen such that the approximation to 〈A〉 expressed in Eq. (67) does not vary
significantly with a further increase of N .
The proposal by Frenkel takes into account the states that are rejected in standard
Markov chain Monte Carlo (MCMC) schemes, e.g. the aforementioned Metropolis
algorithm, and thus are not visited. Frenkel argues that “this approach leads to
a dramatic improvement in the statistical accuracy of Monte Carlo simulations”
[3]. We start by reviewing the proposal, taking its application to the Metropolis
algorithm as an example. The method, however, is applicable to any valid MCMC
scheme [3].
The algorithm proposed by Frenkel adds an extra element to the Metropolis al-
gorithm. In each Monte Carlo step i, i.e. each step during which a trial step (or
set of trial sets in other MCMC schemes) is proposed and possibly accepted, the
weighted average

Si =
w1A1 + w2A2

w1 + w2

(68)

is formed. Here 1, 2 denote the two possible final states, which are the original state
(in case the trial state was rejected) and the trial state. The weights w1,2 are given

1Another possible choice is Pji = 1
1+pstat

i /pstat
j

, which also obeys the detailed balance condition.
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by the probability of being in the corresponding state according to p∗, e.g. the
Boltzmann distribution. After the final state has been determined, the algorithm
proceeds with the next Monte Carlo step as described above, and finally, after the
desired number M of Monte Carlo steps have been carried out, the expectation
value of interest 〈A〉 is estimated as

〈A〉 '
∑M

i=1 Si

M
, (69)

where M is chosen such that the estimate to 〈A〉 does not vary significantly with
increasing M .
The proposal by Frenkel can be shown to satisfy the balance condition [3] (not to be
confused with the detailed balance condition). As expressed in Ref. [2], the balance
condition requires that the desired distribution, e.g. the Boltzmann distribution, is
left invariant by the Markov chain mimicking the Monte Carlo simulation. More-
over, the proposal can be shown to obey so-called superdetailed balance [3], which
despite of the name is a weaker condition than the detailed balance condition. The
superdetailed balance fulfills the conditions given by Manousioutakis and Deem [2],
and is thus sufficient to ensure the validity of Frenkel’s proposal [3]. We shall re-
frain at this point from discussing superdetailed balance in further detail. We
refer the interested reader to the work by Frenkel for a thorough discussion of
superdetailed balance [3].

2.2 Implementation and results

In order to test the proposal by Frenkel, we implemented the Metropolis algorithm
with the additional steps as described above. The results showed – numerically
– that the algorithm proposed by Frenkel leads to the same results as the stan-
dard Metropolis algorithm. However, no increase in computational efficiency was
observed. This is in accordance with Frenkel who states [3] that the advantages
of his proposal are limited when applied to e.g. conventional MCMC simulations
with a simple spin flip dynamics. To obtain an increase in computational efficiency
the method should be applied in cases where a very large number of trial states
are generated in parallel [3]. This is naturally done in the cluster algorithms such
as Wolff or Swendsen–Wang algorithms for flipping clusters of spins at one step
instead of one spin.
In order to test this statement, we applied the proposal by Frenkel to a Swendsen–
Wang (SW) cluster algorithm [4] for the nearest neighbor Ising model. The al-
gorithm is implemented as follows. A cluster of spins is constructed such that if
two neighboring spins have the same orientation, they belong to the same cluster
with the probability 1 − exp(−K), where K = J/(kBT ), and J is the coupling
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Figure 1: The histograms for the total spin in the 32×32 lattice are shown for the
Frenkel’s method (solid line) and conventional Swendsen–Wang implementation
(open circles). As can be seen, the Frenkel’s method gives more accurate results
and spans a wider range in the spin values. The scatter in the data indicates the
errors.

constant of the Ising Hamiltonian. The clusters in the lattice are then flipped
with probability 1/2. In constructing the clusters with one lattice sweep we have
used the Hoshen-Kopelman algorithm [5]. In the simulations the lattice size was
32 × 32, K = 0.30, and 50 000 updates after equilibrating over 10 000 steps. It
must be noted that with SW algorithm once the spin clusters have been chosen,
the probability of obtaining any possible final value for the total spin is uniform.
Thus, once we have constructed the clusters, each cluster is flipped independently
of the others.

In equilibrium we sample in principle all possible values of the total spin. In Fig. 1
we show this distribution of the total spin obtained with the Frenkel’s method (solid
line) and the ordinary SW (open circles). As stated in Ref. [3] the new method
clearly outperforms the typical sampling in accuracy and also spans a wider range
of the total spin values. This is expected since the new method utilizes all cluster
configurations generated with one lattice sweep when calculating the estimates for
the average quantities.
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3 Transition matrix approach

Next we consider approach the problem of violating the strict detailed balance
condition from a slightly different point of view. In the following we wish to
investigate the convergence rate of a MC simulation based upon knowledge of the
eigenvalues of the corresponding transition matrix of the Markov chain.
Consider a physical system which is described by a finite number of states ri

(configurations) with probability of states pi. As discussed above, if the physical
process evolving this system is described by a stochastic process with no memory
the evolution process is described by a Markov chain,

pi = A(pi−1) or in matrix notation pi = Api−1, (70)

where A is the transition matrix. In general in physical systems of interest the
transition matrix A is extremely large. It is thus very inconvenient to evolve the
system according to Eq. (70), in stead the probability of states are evolved by the
Monte Carlo (MC) simulation method. In a MC simulation only the probability of
states vector p and the states vector r are stored in memory. The evolution of the
system is now governed by having knowledge of the hamiltonian of the system and
by means of a random ”flip between states” model. The hamiltonian may, e.g., be
of type long range or nearest neighbor. The flip model may be, e.g., of type single
flip, random total flip, or cluster flip (Wolff).

3.1 Problem: mathematical formulation

Our problem is to find the optimal transition matrix A, which fulfills the following
conditions

• Aij ≥ 0, ∀i, j

•
∑

i Aij = 1, ∀j

• Ap = p,

where p ∈ Rn is the steady state distribution. By optimal we mean that the
convergence of

lim
M→∞

AMparb. = p (71)

is as fast as possible, where parb is an arbitrary initial condition. The convergence
rate of the process described in Eq. (71) is given by

‖AMparb. − p‖≤ C|λ2|M , (72)
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where |λ2| is the second largest eigenvalue of A. So one way to increase convergence
speed is to minimize |λ2|. The convergence of the system Eq. (71) is guaranteed if
we enforce detailed balance (see other chapters).
If we know the steady state solution p then the optimal transition matrix is A =
p1T , where 1 is a vector with every element is one. Unfortunately the dimension of
the steady state distribution is in general so large (e.g., n = 21000 with 1000 ”spins”
or particles) that we do not have computational power to calculate it. Because of
this we find a transition rate function

f : Aij = f

(
pj

pi

)
, (73)

so that the number of nonzero elements N of A is small and |λ2| is small. Un-
derstandably we thus try to find a transition matrix so that the computational
time is as small as possible. This criterion is roughly the same as requiring fast
convergence of

lim
MN→∞

AMparb. = p. (74)

In the following sections we investigate the behavior of the convergence speed, the
size of the eigenvalue |λ2|, and of the error. We do that by comparing different
types of the transition rates (Metropolis and Kawasaki), different types of update
schemes (single flip and random configuration flip), and different types of hamilto-
nians (long range and nearest neighbor). Also note that we do not fiddle with the
detailed balance condition to perform this study. The different MC models where
implemented in MatLab.

3.2 Small example: Randomly flip only one spin

As a first example assume that we have a system of nine spin then the number
of states is n = 29 = 512 (either spin up or spin down). In the MC simulation
we randomly flip one spin and the hamiltonian only includes nearest neighbor
interactions. In Fig. 2 we compare the Metropolis and Kawasaki models. The
error is calculate by following

Error(M) =
∑
i,j

|
[
AM − p1T

]
ij
|. (75)

For this first small example the chosen parameters make the Metropolis model
converge the fasts.
Table. 3 includes values for the second largest eigenvalues and converges rates.
We notice that the second largest eigenvalue gives a quite accurate limit for the
convergence exponents.
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Figure 2: Temperature is kbT = 1, nearest neighbor hamiltonian

|λ2| 10
′′slope′′

Metropolis 0.84 0.83
Kawasaki 0.91 0.90

Table 3: Convergence rates: analytic and simulated corresponding to the results
shown in Fig. 2.

3.3 Convergence dependency

In Figs. 3 and 4 we have calculated the second largest eigenvalue |λ2|, they are
depicted as function of the energy kbT . The energy kbT enters the transition rate
function f in Eq. (73). As mentioned we compare the Metropolis and the Kawasaki
models having,

fMetro =

{
exp(−δE/kbT ) if δE > 0
1 if δE ≤ 0

(76)

fKawa =
1

2
[1− tanh(δE/kbT )] , (77)

where δE is the difference in energy between two states ri and rj. We have used
the Boltzmann statistics so that

pj

pi
= exp(−δE/kbT ), so fMetro and fKawa can be

written as in the form of Eq. (77). For the following simulations we have chosen a
system consisting of n = 9 spins and we perform M = 10000 iterations in the MC
simulation.

40



10!1 100 101
0

0.2

0.4

0.6

0.8

1
Metropolis
Kawasaki

10!1 100 101
0

0.2

0.4

0.6

0.8

1
Metropolis
Kawasaki

|λ
2
|

kbT

|λ
2
|

kbT

(a) (b)

Figure 3: (a) Long range weak interaction, flipping to a random new state ri ,and
(b) Short range interaction, flipping to a random new state ri.
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Figure 4: (a) Long range weak interaction, flip only single random spin in the
configuration ri, and (b) short range interaction, changing only single random spin
in the configuration ri.
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From the figures it is evident that there is a clear dependence on of the eigenvalue
|λ2| on the energy kbT as well as on the hamiltonian and the updating scheme.
Note that for the long and short range interactions the difference are not very
large, but noticeable. Because of the size of the system (n = 9) all sites are sort
of ”neighbors”.

4 Conclusions

In conclusion we have reviewed and discussed the possibility of constructing Monte
Carlo simulation schemes that do not obey the detailed balance condition. In par-
ticular, we have studied a recent proposal for speeding up Monte Carlo simulations
by extending existing proposals, taking into account rejected trial states. The pro-
posed algorithm obeys the so-called superdetailed balance condition, which is suf-
ficient to ensure a valid Monte Carlo simulations, however without being as strict
as the detailed balance condition. We have applied the method to two existing
Monte Carlo algorithms, the Metropolis algorithm and the Cluster algorithm, and
found that the method in case of the Cluster algorithm provides an increase in
computational efficiency compared to the original algorithm. By examining the
second largest eigenvalue of the transfer matrix we also investigated the speed of
convergence of Metropolis and Kawasaki updating schemes. We found that there
are differences in the convergence between short and long range interactions as well
as between the updating schemes. We see that depending on the physical system
studied and the temperature the choice for the specifics of the MC simulations are
important when concerned with convergence speed.
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Group 4
Electrohydrodynamic stability analysis of
two-phase flows in confining microsystems

C. V. Achim, T. Ambjörnsson, J. Ö. Bakke,
K. Krupchyk, E. Kuusela, T. Laurila,

M. Lomholt, A. Loubenets, O. Punkkinen,
W. Villanueva, G. Goranović and H. Bruus

1 Introduction and description of the system

(Presented by Teemu Laurila)
We are considering flow of two immiscible liquids in a wide and shallow microchan-
nel, i.e., essentially between two parallel planes, Fig. 1. The flow is a steady-state
Couette-Pouiseuille flow driven by an upper moving wall, and the interface between
the two liquids is exposed to an electric field either normal or parallel to the flow.
The problem was to investigate the conditions of instability of the interface in the
small Reynolds number regime as well as with respect to the values of normal and
tangential fields.
Assuming incompressible flow, the Navier-Stokes equations governing the 2D flow
(U,W ), are simplified to

RDtU = −∂xP +∇2U (78)

RDtW = −∂zP +∇2W (79)

∂xU + ∂zW = 0, (80)

for both liquid domains separately. The boundary conditions at the walls are no-
slip. At the interface we have continuity of flows, no tangential stress, and the
surface tension balances the normal stress.
Assuming the liquids are perfect dielectrics, the electric potential obeys the Laplace
equation

∇2Φ = 0. (81)

43



stationary wall

ez

ex

h1

h2

µ1, ρ1, ε1

µ2, ρ2, ε2

E1

E2

U0

ζ
small

perturbation

interface

moving wall

liquid 1

liquid 2

Figure 1: Two streaming fluid dielectrics confined between two infinite, micro-
scopically spaced plates. The liquids differ in mass density, viscosity and dielectric
constants, and occupy different depths of the microchannel. The liquids are in
addition exposed to an electric field. U0 is a slip (driving) velocity at the wall.

The boundary conditions are given by a potential difference between the cathodes.
At the interface we have the continuity of tangential electric fields, and the normal
electric field changes as given by the difference between dielectric constants.
Coupling between fluid and electric equations comes only by the stress the electric
field introduces at the interface.

2 Perturbed flow: governing equations and bound-

ary conditions

(Presented by Teemu Laurila and Alexei Loubenets) We are looking into the sta-
bility of a small perturbation in the interface

ζ(x, t) = ζ0e
ik(x−ct). (82)

where c = Re c + iIm c is the complex phase velocity. The perturbations are
unstable if Im c > 0.
The dispersion relation c(k) for our system is obtained by linearizing in ζ(x, t).
This linearization for all the fields F ∈ {U,W,P,Φ} is obtained by expanding
explicitly in ζ, and in fluctuations F (1) implicitly caused by ζ

F (ζ) = F (0)(0) + ζ∂zF
(0)(z)|z=0 + F (1)(0) + ... (83)

This expansion in a function ζ, can be formally written with a ”counter” α

F (ζ) = F (0)(0) + α[ζ∂zF
(0)(z)|z=0 + F (1)(0)]

+α2[
1

2
∂2

zF
(0)(z)|z=0 + 2ζ∂zf

(1)(z)|z=0 + F (2)(0)] + ...
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Linearization in this way produces a system of equations that depend on the fluc-
tuations U (1),W (1),P (1),Φ(1), as well as ζ(x, t). By solving this (linear) system of
equations for the fluctuations F (1)(x, z, t) = f (1)(z)eik(x−ct) we obtain the disper-
sion relation.
In the linearized equations, the flow is a potential flow given by

(U,W ) = (∂zΨ,−∂xΨ), (84)

where the flow potential is also of form Ψ(1)(x, z, t) = ψ(1)(z)eik(x−ct). The lin-
earized system of equations then reduces to one ordinary differential equation for
ψ. It is the Orr-Sommerfeld equation, which at 4th order is rather complicated

ψ4
j − 2k2ψ2

j + k4ψj = ikRej

(
(u0

j − c)(ψ2
j − k2ψj)−u0

jψj

)
for j = 1, 2 (85)

where ψ1, ψ2 are the stream functions for the upper and lower liquids, k is the
wave number, Re is the Reynolds number and c is the complex phase velocity of
the displacement ζ defined in Eq. 82.
Additionally, we have no slip boundary conditions at rigid boundaries

ψ2(−n) = ψ′2(−n) = ψ1(1) = ψ′1(1) = 0 (86)

and four jump conditions between ψ2 and ψ1 at the interface point (z = 0)

ψ1(0) = ψ2(0) (87)

ψ′1(0)− ψ′2(0) =
ψ1(0)

c− b
(1−m)a2 (88)

ψ′′1(0) + k2ψ1(0) = m(ψ′′2(0) + k2ψ2(0)) (89)

m(ψ′′′2 (0)− 3k2ψ′2(0)) + irkRe1((c− b)ψ′2(0) + a2ψ2(0))

−(ψ′′′1 (0)− 3k2ψ′1(0)) + irkRe1((c− b)ψ′1(0) + a1ψ1(0))

= ik(k2S + Tel)
ψ1(0)

(c− b)
(90)

where a1, a2, m , S and Tel are some given quantities. Note, that we are interested
in finding both c and the stream functions ψ. The phase velocity c will give us the
required value of the perturbation ζ (via Eq. (82)). At the same time, with help
of c and the stream functions ψ1, ψ2 we will be able to reconstruct the first-order
flow field through Eq. (84) and(

Ψj, P
(1)
j

)
=

(
ψj(z), p

(1)
j (z)

)
exp (ik(x− ct)) for j = 1, 2 (91)
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The Orr-Sommerfeld Eq. (85) together with the boundary conditions, Eqs. (86) -
(90), can be solved numerically, or additionally expanded in terms of small Reynolds
number (characteristic for microsystems), i.e., limit R→ 0, and analytically solved
for different orders of expansion, yielding a dispersion relation.
Our work proceeded from this point in three directions. We tried both, the numer-
ical solution of the Orr-Sommerfeld equation and the BCs with non-zero Reynolds
number, and the zero-order analytic expression of the dispersion relation in the
expansion for very small Reynolds number. Finally we also simulated the origi-
nal hydrodynamics problem using a fluid dynamics solver, that included a diffuse
interface between the two immiscible liquids.

3 Numerical solution: determining the phase ve-

locity and the stream function

(Presented by Alexei Loubenets) We decided to split the initial task (that is to
obtain both phase velocity and stream functions) in two parts:

1. Fix the value of c (some initial guess, based on zero-order approximation)

2. With the fixed c solve Orr-Sommerfeld equations for ψ1 and ψ2

3. Using ψ1 and ψ2 update the guess for c and repeat all steps until some relative
tolerance is met.

In step (2) we decided to apply Shooting method, namely to solve the given bound-
ary value problem as an initial value problem. Thus we proceed as follows

1. Make an initial guess of ψ′′1(1) and ψ′′′1 (1)

2. Define Y1 = [ψ1, ψ
′
1, ψ

′′
1 , ψ

′′′
1 ] and solve the initial value problem for the upper

liquid {
Y ′

1 = F1(z, Y1)

Y1(1) = g1

for z ∈ [1, 0]

3. Define Y2 = [ψ2, ψ
′
2, ψ

′′
2 , ψ

′′′
2 ] and use the jump relation at the interface point

z = 0 to obtain the initial guess Y2(0) = g2

4. Solve the IVP for the lower liquid{
Y ′

2 = F2(z, Y2)

Y2(0) = g2

for z ∈ [0,−n]
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5. Use Newton method to update the initial guess ψ′′1(1) and ψ′′′1 (1)

Unfortunately, this approach ( fixing c and solving Orr-Sommerfeld equations for
ψ1 and ψ2 only) turned to be unfitted for our problem. It is only the trivial solution
that we were able to capture. Thus, for this problem, we suggest to use some more
establish techniques such as: Compound Matrix method or FEM type method.

4 Analytic solution: zero order dispersion rela-

tion c(k)

(Presented by Jan Öystein Bakke)
The zero-order dispersion relation was taken from equation (102 b) of Ref. [1].
The Figs. 2-4 show Im c[0], i.e., the imaginary part of the phase velocity of a
plane wave perturbation of the solution of the Orr - Sommerfeld’s equations to the
zeroth-order in small Reynolds number, described in the paper referred to above.
We observe that there exist unstable long wavelengths perturbations, and that
for the zeroth-order solution only the application of electric fields normal to the
liquid interfaces creates instabilities. As seen from the dependence in Eq. (82), the
instability (exponential increase in time) happens in regions where Im c[0] > 0.

5 Simulations of the interface instability

(Presented by Walter Villanueva)
An adaptive finite element simulation is implemented to study the electrohydro-
dynamic stability of two streaming viscous liquids. The flow is tackled as a diffuse-
interface problem where the transition between the two fluids has a finite thick-
ness. The fluids are considered viscous and incompressible with variable viscosity,
density, and dielectric constant. A phase-field method is considered wherein the
system consists of two phases each with distinct constant value and changes rapidly
and smoothly in the interfacial region. The flow is governed by the Navier-Stokes
equation with added forces due to surface tension, electric field, and gravity. The
evolution of the interface is governed by the convective Cahn-Hilliard equation. An
equation is derived from free energies of the system and models creation, evolution,
and dissolution of diffusively-controlled phase-field interfaces.
The following physical parameters are obtained after nondimensionalizing the
equations given in the reference : Reynolds number Re, Capillary number Ca,
Bond number Bo, electro-parameter W , Peclet number Pe, viscosity ratio m, and
dielectric ratio d. With the parameter values Re=0.001, Ca=0.8, Bo=0.0001,
Pe=10000, m=10, d=1.0 which means no electric field is imposed, the flow was
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Figure 2: Im c[0] as function of wave number k and applied voltage. An increase
in voltage increases the unstable region of long wavelengths (small wave numbers)
where the effects of the surface tension are reduced. The curves asymptotically
approach each other for very large k as the stabilizing effect of surface tension
becomes dominant (provided the voltage remains fixed).

laminar and no signs of instability was observed. A perturbed flow is then added
in the streamwise direction with an amplitude of 0.2 and frequency 0.005 and
still without electric field. The perturbed flow was damped and the oscillations
disappeared.

Finally, an electric field was set directed perpendicular to the flow with d=0.8 and
W=0.1. The flow became unstable and the addition of the electric field magnified
the perturbation that created a spike with amplitude half of the lower fluid’s height.

Figs.5 and 6 show interface before and after the electric field is turned on. Initially
flat interface at t = 0 becomes deformed as the field is turned on, t = 2. Whereas
Ref. [1] gives the onset of instability in the linear approximation, the numerical
simulations presented here show the nonlinear evolution of the interface beyond
the onset, thus complementing the theory.
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Figure 3: Im c[0] as function of wave number k and viscosity ratio m (and zero
electric field). No instability is induced in the zero-order perturbation. The flow,
however, becomes relatively less stable as m increases, i.e., when the lower liquid
becomes more viscous relative to the upper one. Also, for very small wave numbers
flow becomes independent of m.
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Figure 4: Im c[0] as function of wave number k and thickness ratio n (and zero
electric field). No instability is induced in the zero-order perturbation. The flow
becomes relatively more stable as n increases, i.e., when the lower layer becomes
thicker relative to the upper one. Also, the flow is asymptotically independent of
n for very small and large wave numbers.
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Figure 5: Two-phase flow system with parameters Re=0.001, Ca=0.8, Bo=0.0001,
Pe=10000, m=10, d=0.8, and W=0.1 at t=0. The interface is completely flat.

Figure 6: The same system at t=2. Electric field causes the interface instability
which eventually becomes a large nonlinear deformation (spike).
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Group 5
The reality of the compound solution in

magnetohydrodynamics

Axel Brandenburg, Christian Klingenberg, Knut Waagan,
H̊avard Huru Bergene, Yuan Lin, Mohammad Motamed,

Thomas Ramstad, Joni Virtanen,

1 Introduction

The equations of magnetohydrodynamics (MHD) are obtained by coupling the
Euler equations of gas dynamics and the Maxwell equations of electromagnetism.
They describe the flow of a fluid in the presence of magnetic field. For ideal gases,
the inviscid MHD equation in one dimension reads

∂tρ+ ∂x(ρvn) = 0,

∂tρvn + ∂x(ρv
2
n + p+ 1

2B
2
t ) = 0,

∂tρvt + ∂x(ρvt −BnBt) = 0,

∂tρBt + ∂x(vnBt −Bnvt) = 0,

∂tE + ∂x((E + p+ 1
2B

2
t )vn −BnBt · vt) = 0,

(92)

where the variables are density ρ, flow velocity v = (vx, vy, vz) = (vn,vt), magnetic
field B = (Bn,Bt), and total energy E. The total energy is substituted by the
pressure

E =
1

γ − 1
p+

1

2
ρv2

n +
1

2
ρvt

2 +
1

2
Bt

2, (93)

where γ is the adiabatic constant. Note that because of the divergence condition
∇·B = 0 in 1D, Bn has to be constant, and therefore we consider it as a parameter.
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By writing the system (92) in the quasi-linear form Ut + AUx = 0, one can see
that it has the characteristic velocities

λ1 = v − cf , λ2 = v − cA, λ3 = v − cs,

λ4 = v,

λ5 = v + cs, λ6 = v + cA, λ7 = v + cf ,

(94)

which are the eigenvalues of the Jacobian A. The fast, slow and Alfven velocities
are computed as

cf,s =

√√√√1

2

(
B2

n + Bt
2

ρ
+ a2

)
±

√
1

4

(
B2

n + Bt
2

ρ
+ a2

)2

− a2
B2

n

ρ
,

cA =

√
B2

n

ρ
,

(95)

where a =
√

γp
ρ

is the sound speed.

Since cs ≤ cA ≤ cf , the real eigenvalues (94) may coincide at certain points, and
therefore the MHD equation is a non-strictly hyperbolic system. For example if
Bn = 0, we get cs = ca = 0, and v is an eigenvalue of multiplicity 5.

2 Stability of the waves

In a Riemann problem for a hyperbolic system, the initial conditions are discontin-
uous. the solution of such problems is built from either discontinuities, like shock
waves, or rarefaction waves. Due to the non-strict hyperbolicity of MHD equations,
the wave structure of the Riemann problem for ideal MHD, governed by 7 waves,
is more complicated than for a strictly hyperbolic system; First, the uniqueness
of solution is not guaranteed. Second, the system may admit non-regular waves,
including compound waves and over-compressive shocks.
We will specifically study the Riemann problem with left state

(ρ, vn,vt, Bn,Bt, p) = (1, 0, [0, 0], 1, [1, 0], 1) , (96)

and right state

(ρ, vn,vt, Bn,Bt, p) = (0.2, 0, [0, 0], 1, [cosα, sinα], 0.2) , (97)

as initial conditions, which was investigated by Manuel Torrilhon in [4]. Angle α
is the initial twist angle of the planes of the magnetic fields. The exact solution
for α = 3.0 and α = π is shown in figure 1.
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Figure 1: Exact solutions of (92,96,97), calculated by Torrilhon [3].

For certain initial data the Riemann problem for ideal MHD does not have a unique
solution. In [5], the uniqueness condition has been derived as the following:

Theorem. If for the initial conditions in the non-planar case (α 6= kπ, k = 0, 1, 2),
the condition [[vt]] = 0, or in the coplanar case (α = π), the condition 0 6= [[vt]] 6‖
[[Bt]] holds, then the MHD Riemann problem has a unique regular solution.

Here, the quantity
[[φ]] := φ(1) − φ(0)

describes the jump of the fields to right and left of the discontinuity.

From the theorem it follows that the solution of (96) and (97), when α = π, is not
unique since [[vt]] = 0. In this case the left and right states have magnetic fields in
the same plane, and there are two solutions to the Riemann problem, which we will
denote the r-solution and the c-solution, following [4]. The ’r’ in r-solution stands
for regular since it is composed of only Lax shocks, rarefactions, rotational dis-
continuities and a contact discontinuity, all having nice stability properties. The
c-solution, however, has a compound wave (hence the ’c’) travelling to the left,
where a marginally over-compressive shock is directly followed by a slow rarefac-
tion. For α 6= π there is only one solution, Uα to the Riemann problem (96), (97),
and as α → π, Uα approaches the r-solution. Hence the c-solution is unstable to
arbitrarily small perturbations of B out of the plane.

Therefore one might suggest that the c-solution does not have physical significance.
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However, we have assumed that there is no viscosity, which is an approximation.
In the viscous equation the momentum equations are modified as follows:

∂tρvn + ∂x(ρv
2
n + p+ 1

2B
2
t ) =

2

3
ν∂x(ρ ∂xvn),

∂tρvt + ∂x(ρvt −BnBt) = ν∂x(ρ ∂xvt),
(98)

If ν > 0 the c-solution will be stable under small perturbations in phase space,
including perturbations of B out of the plane. However this stability region shrinks
with ν, until it disappears at ν = 0, see [2].

When doing numerical simulations of the inviscid equations, one also gets more
complex behaviour than the inviscid analysis suggests. For α = π, all the schemes
we are aware of pick the c-solution. However, if α is slightly perturbed, at coarse
grids the schemes will still tend to the c-solution, and begins to converge to the
unique regular solution only when the grid is refined sufficiently. Since all the
schemes add viscosity in a certain sense, it is plausible that the analysis of the
viscous equation might provide some explanation for this. For coarser resolution
the numerical viscosity is higher, so it is as though the data are within the stability
region of the c-solution until we refine, and thereby reduce viscosity, sufficiently.

3 Solving the inviscid MHD equations

To solve the inviscid one dimensional MHD equations (92) numerically we used
the Staggered Central Scheme by Tadmor and Nessyahu [1]. The scheme is 2.
order i01 Deviĺs Haircut.mp3n time and space. Already on the second day of the
workshop we were able to run a few test runs with an existing two-dimensional
code written by Knut Waagan for α 6= π.

The only modifications needed was specifying the initial conditions, and setting
the dimensions to n × 1. We were able to reproduce the convergence behavior
discussed by Torrilhon in [4]. For coarse grids the solution is “c-like”, and for finer
grids the solution approaches the correct r-solution.

Since the code was two-dimensional it was quite time consuming to run on finer
grids (> 10000 grid points). The goal was to run on very fine grids (> 100000
grid points), so we stripped the 2nd dimension from the code, giving a purely one-
dimensional code. Then the code ran about 10 times faster. The code running on
a 1.6 GHz portable computer ran 10000 grid points to time t=0.4 in a couple of
hours, while 50000 grid points required about 24 hours. In order to run on even
finer grids we started parallelizing the code.
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3.1 Parallel version

The parallelization was done using domain decomposition. Assuming that we have
N processors (and domains) numbered by i ∈ [0, N − 1] and n total grid points.
The the domain of processor i have ni = n/N grid points. The division is integer,
and in case the modulo is nonzero, each processor with rank less than the modulo
get one more grid point. In addition the grid has two1ghost cells on both sides
of the domain. The ghost cells are set by communicating the corresponding cells

cpu3cpu2cpu1cpu0 cpu4 cpu5

Figure 2: An example of domain decomposition of a system with n = 64 grid points
distributed to N = 6 processors. Arrows show the direction of communication.

from the neighbouring domains. Figure 2 shows an example for n = 64 and N = 6.
The arrows shows the direction of communication. If the ghost cells lie outside
the boundaries of the total grid they are set using Neumann boundary conditions.
The communications are done using MPI which is widely available and may run
on both massively parallel computers and workstation clusters.

1Actually we use three ghost cells to avoid communicating twice each time step.
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The parallelization was done just in time to run on 100000 grid points before last
preparations for the next days final presentations. Using 32 2,6GHz processors on
the Horseshoe cluster in Odense (Denmark) the running time was less than 1 hour.

3.2 Results

In figure 3 we have plotted the density, ρ and the y-component of the magnetic
field By for different number of grid points using (96,97) and α = 3.0. Note that
for coarse grids we get a solution that is similar to a c-solution, and that for the
finer grids we approach the analytic r-solution.
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Figure 3: The transition from a “c-like” solution towards the exact r-solution for
α = 3.0.

3.3 Numerical stability of the r-solution

For α = π we were not able to get the r-solution at all numerically. But as a
step towards achieving that, we decided to sample the r-solution at some time,
and use it as the initial condition for the Nessuahu-Tadmor scheme. In order to
do so we obtained from M. Torrilhon his calculation of the exact solution to the
Riemann problem (96)-(97). The simulation did not simply evolve the r-solution
as one would expect. Instead the left-going rotational discontinuity broke up into
several new structures that eventually interacted with the slow shock - Hence
the self-similarity of the r-solution was destroyed. We believe that this failure is
due to a general difficulty in resolving rotational discontinuities numerically, since
similar phenomena could be observed for other Riemann problems consisting only
of a rotational discontinuity. There seemed to be some analogy with the issue
of resolving shear waves in hydrodynamics. However this observation does not
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contradict the presence of rotational discontinuities in numerical solutions of other
Riemann problems. In that case they emerge in a stable fashion out of other
structures. It is possible that some kind of smoothing of the initial rotational
discontinuity would solve this issue.

3.4 1-D simulation using the Pencil code

Although the pre-existing Pencil code was able to provide the necessary tool for the
numerical computing, it – as a fully three-dimensional – was a bit supernumerary
for our purposes. Namely, as we needed only one-dimensional analysis and only
certain 1-D related operations, the inclusion of un-needed extra dimensions and
complex numerical algorithms were slowing down the simulations unnecessarily.
Thus, we decided to write a new, lighter 1-D code basing on the Pencil code in
order to reduce computing time in the forthcoming simulation runs.

The ”dimension reduction” was performed so that one of the group leaders as
well as one of the members started to work on the pre-existing code using CVS
2 for keeping track of changes and dealing with (and avoiding, as much as pos-
sible) conflicting modifications of the source codes. This approach turned out to
be successful, and at the end of the week we had managed to do nearly all the
modifications needed to have 1) modules for the physical interactions and prop-
erties, 2) mathematical formulas for needed derivatives and other operations, and
3) data handling and visualization procedures turned or rewritten to work in the
1-D scheme.

Taking into account the limited amount of time for working within the frames of
the workshop, the (re)writing of the whole simulation code package was, obviously,
too wide a project to be completed in order to have a working and tested code for
the rest of the groups, so the contribution of the coding part of the work group to
the overall research of the group remained minor. On the pedagogical side, on the
other hand, this part of the project was very fruitful: getting in touch with larger
scale coding projects and learning to use certain development and code writing
tools effectively, together with seeing alternative uses for some familiar tools, was
very instructing.

As for the future, there is still more work to do in order to get the code fully working
in every aspects, including not only the dimensional conversion and rewriting of
the code, but also testing and documentation as well; this project is very likely to
continue beyond the workshop.

2Concurrent Versioning System, see https://www.cvshome.org/
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3.5 Regular and compound solutions in the 1D viscous case

We investigate numerically solutions to the MHD problem where the RHS of Eq.
(92) do not vanish and the momentum equations will take the form of Eq. (98).
Initially a regular shock is applied, and it is the aim of this section to look at
the non-uniqueness in solutions for different values of α and ν, hence the angle
between Bt before and after the shock and the viscosity.

In the case where we have the least viscosity the solutions have more numerical
noise due to the discretization of the grid. We used grid sizes of hence 20000 and
50000 grid points in the x-direction due to the scheme described previously. The
runs were carried out on a single CPU with the serial version of the Pencil Code
and the results are shown in the figures below.
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Figure 4: Numerical solutions with ν = 0.002 and ν = 0.005 with different α. The
runs are done with 50000 grid points and took several hours on a single CPU.

In the results we see that for α = π and close to α = π the solution is compound
like, while in the case of alpha < 3.1 the solutions tend towards a regular wave.
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Group 6a
A Monte Carlo approach to DNA-breathing with

two bubbles

Mikael S. Hansen , Jonas N. Pedersen , Tomáš Novotný

1 Introduction

Double stranded (ds) DNA is made of nucleotide base pairs adenine (A) binding
only to thymine (T) and guanine (G) binding only to cytosine (C) via two and
three hydrogen bonds, respectively. This difference in the number of bonds leads to
a difference in melting temperature with TAT

m ∼ 20−70◦C and TGC
m ∼ 70◦C [1]. At

body temperature the typical structure of dsDNA is that of the well-known (right-
handed) α-helix but when increasing the temperature the strands can dissociate
and form bubbles as illustrated in Fig. 1.

L1 L2D

X2 X3 X4X1

Figure 1: Sketch of a two-bubble scenario in a homopolymer as considered in
this article. Endpoints should be considered as clamped such that a complete
separation of the DNA strands cannot occur.

Recently it has become possible to study the dynamics of individual bubbles in
short (∼ 30 − 40 base pairs) segments of designed DNA using fluorescence cor-
relation spectroscopy [1] and the method is currently being extended to longer
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segments. This will allow experimental studies of dynamically more interesting
situations, e.g. the two-bubble scenario presented in this article.1

The bubble dynamics is determined by a local bond-breaking mechanism and a
global entropic loop closing cost (due to a reduction in the number of configurations
as the ends of the strands are forced to meet and form loops) [7].

2 The model

We model dsDNA as a sequence of N base pairs each of which can be either formed
(zipped) or broken (unzipped). As initial conditions we take endpoints X1, X2 for
the first bubble and X3, X4 for the second bubble where X1 < X2 ≤ X3 < X4

shown in Fig. 1. The length Li, i = 1, 2, is the number of broken base pairs in
bubble i. The distance between the bubbles is denoted D.

We assume that only base pairs at the zipper forks, X1, .., X4, can either unzip,
or the neighboring base pairs can zip, i.e. no new bubbles are initiated during
the simulation.2 The bubble dynamics are now given by rates, r

−(+)
i , for zipping

(unzipping) at Xi. We have generic rates

r+
1 = r+

2 = ku

(
L1 + 1

L1 + 2

)c

= ku

(
X2 −X1

1 +X2 −X1

)c

, (unzipping) (99)

r−1 = r−2 = k, (zipping) (100)

r+
3 = r+

4 = ku

(
L2 + 1

L2 + 2

)c

= ku

(
X4 −X3

1 +X4 −X3

)c

, (unzipping) (101)

r−3 = r−4 = k, (zipping) (102)

also used in Ref. [4] to study the evolution of a single bubble. Here k is the zipping
rate of a single base pair and u = exp(−∆Ebreak(T )/kBT ) the statistical weight
associated to the breaking of an additional base pair. We use ∆Ebreak(Tm) = 0 such
that u = 1 is the weight at melting temperature. The last factor in the unzipping
rates stems from the entropic cost (1 + L)−c of making the single strands meet to

1For practical reasons it will be more interesting to consider the heteropolymer situation. We
return briefly to this later.

2This is a reasonable assumption due to a high bubble initiation cost ∆Ebubble ∼ (7−12) kBT
yielding the cooperativity parameter σ0 = exp(−∆Ebubble/kBT ) ∼ 10−3 − 10−5.
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form a bubble of length L. The constant c is set to c = 3 × 0.588 (see [4] and
references therein).3

Boundary conditions have to be handled separately. When the bubbles are at the
boundaries of the DNA

r+
1 = 0, X1 = 1

r+
4 = 0, X4 = N

(103)

and when the bubbles have a common boundary base pair

r+
2 = r+

3 =
ku

2σ0

(
(L1 + 1)(L2 + 1)

L1 + L2 + 2

)c

, X2 = X3 (104)

where σ0 ∼ 10−5 − 10−3 is a coorporativity parameter expressing how costly it is
to initiate a new bubble due to the breaking of the non-local helix structure(see
footnote 10).
Remark: To construct the rates Eqs. (99)-(104) we assume the detailed balance
condition to be satisfied by our system. This is a sufficient (but not necessary)
condition for the system to reach equilibrium eventually.4

It is possible to formulate the problem in terms of a master equation

Ṗ ({X1, X2, X3, X4}) = L̂P ({X1, X2, X3, X4}), (105)

where P ({X1, X2, X3, X4}) is the probability of finding the DNA in a configuration
{X1, X2, X3, X4} and L̂ is a linear operator5. A master equation approach has
been used for both a single bubble [7] and its interaction with single stranded
binding proteins [2]. However this approach is not suitable for more bubbles where
the larger number of degrees of freedom makes even the formulation of a master
equation intractable. Following Ref. [4] we instead use the Gillespie (Monte Carlo)
algorithm presented in the next section.

3 The Gillespie algorithm

Given an initial configuration, {X0
i }, we want to simulate how the two bubbles

evolve in time. To do this we apply the Gillespie algorithm introduced in 1973 as
a stochastic approach to the study of chemical reactions. In this section we briefly
describe the algorithm [6].

3P-G. de Gennes’ Scaling Concepts in Polymer Physics, Cornell Univ. Press, Ithaca (1979). c
is the (Flory) scaling exponent for the radius of gyration of a 3-dimensional self-avoiding random
walk.

4For more information about detailed balance see papers by work group 3 directed by T.
Ala-Nissilä.

5This corresponds to a simple Markov process, i.e. there is no memory in the system.
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With two bubbles there are eight ways of updating the system, that is, zipping or
unzipping at one of the four zipper forks. We assume that the statistical weight
for a given event, µ, to happen in a time interval [t, t + δt is rµδt. Here rµ are
the rates defined in the previous section, i.e. µ = (i,+/−), i = 1, . . . , 4. As some
of the rates depend on the length of a bubble, the probability for something to
happen depends on the configuration, {Xi}, of the system at time t.
The idea is now the following [6]:
What is the probability that nothing happens in the time interval [t, t+ τ ] and in
the following interval [t+ τ, t+ τ + dτ ] an event of type µ happens?
This probability is the so-called joint probability density

P (τ, µ)dτ = P0(τ)rµdτ. (106)

To determine the probability P0(τ) that no event happens within [t, t + τ ], this
interval is divided into K pieces of length ε = τ/K. The probability that nothing
happens in the first subinterval [t, t+ ε] is then∏

µ

[1− rµε] = 1−
∑

µ

rµε+O(ε2). (107)

Treating the remaining intervals similarly gives

P0(τ) = [1−
∑

µ

rµε+O(ε2)]K

= [1−
∑

µ

rµτ/K +O(K−2)]K .
(108)

Taking the limit K →∞ and reinserting in Eq. (106) we end up with

P (τ, µ) = rµ exp[−
∑

µ

rµτ ]. (109)

At time t the system is in a configuration {Xi} and the update is done as follows:
i) Rates rµ are calculated using Eqs. (99)-(104).
ii) Generate a pair of random numbers (τ, µ) distributed according to P (τ, µ) in
Eq. (109). 6

iii) Advance the time t → t + τ and update the configuration {Xi} according to
the randomly chosen event µ.
The steps i)-iii) are repeated until the bubbles merge or one bubble disappears in
which case we obtain the one-bubble scenario of [7]. We record the stop time and

6How this is done using random numbers generated from a uniform distribution is shown in
Appendix 6.
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the final configuration {Xi}final and a new run is initiated using the same initial
condition.
Remark: An advantage of the Gillespie algorithm (as opposed to the standard
Metropolis algorithm) is that the system changes at every update. There are no
rejection steps involved — even if the system gets “stuck” in long-lived state it only
takes one update in the Gillespie algorithm to move on (instead we have a long
waiting time at no computational cost).

4 Simulations

In all simulations the initial conditions are X1 = 250, X2 = 350, X3 = 400, X4 =
500 and the length of DNA segment is N = 1000.

4.1 A single time series

With the stochastic approach we can study both ensemble properties and single
time series. Examples of the latter are given in Fig. 2 and Fig. 3 showing the death
of one bubble and the two bubbles merging, respectively.
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Figure 2: A single time series where the right bubble dies (and the simulation
terminates).

4.2 Statistics: Merging/dying times

Turning to the ensemble properties we have made series of 200, 000 runs for dif-
ferent parameter values. The simulation runs until a bubble dies or the bubbles
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Figure 3: A single time series where the two bubbles merge (and the simulation
terminates).

merge. The final configuration and the stop time τdie or τmerge are then recorded.
The results for the probability densities of the two kinds of the stop time are shown
as histograms in Fig. 4.
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Figure 4: Distribution of merger (red full lines) and death (blue dashed lines) times
for 200, 000 runs and u = 1.

5 Discussion and outlook

We see from Fig. 4 that the probability densities behave roughly exponentially
for intermediate times (for large times the statistics is insufficient to make any
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conclusions). This would allow one to define characteristic “life-times” of the two
bubble configuration after which a bubble dies or the bubbles merge. It would be
interesting to study the behavior of these times as functions of initial conditions
and other parameters.
In experiments the presence of two bubbles - used as initial condition in our
simulations - is an extremely unlikely event due to the loop initiating factor
σ0 ∼ 10−5 − 10−3 [3]. More interesting is the case of a heteropolymer, where
the DNA-string is made of sequences of different base pairs (AT or GC) giving
position dependent Boltzmann factors uAT , uGC . This is easy to implement in the
Gillespie scheme introduced above and one can now envision experiments done at
temperatures where uAT > 1 while uGC < 1.
Extending to the heteropolymer case is of broad interest, e.g. in the case of intron
positions in dsDNA (non-coding parts) which is claimed to be linked to the presence
of domains melting at different temperatures [5]. This is however still an issue of
debate.

6 Appendix: Probability distribution

Following Ref. [6] we briefly present how random numbers τ and µ can be con-
structed using numbers drawn from a uniform distribution.
Let Pc(τ

′) be some continuous probability density function, e.g. Pc(τ
′)dτ is the

probability for finding a τ within the interval [τ ′, τ ′ + dτ ]. The probability distri-
bution function is defined as

Fc(τ0) =

∫ τ0

−∞
Pc(τ

′)dτ ′, (110)

which is the probability of some τ being less than τ0. To get a random τ according
to Pc given some random number R ∈ [0, 1] drawn from the uniform distribution
we have to invert Fc(τ) = R.
Using Pc(τ) =

∑
µ P (τ, µ) of Eq. (109) with τ > 0 and inverting we get

τ =
1∑
µ rµ

ln(
1

R
). (111)

In the discrete case

Fd(µ0) =

µ0∑
ν=1

Pd(ν), (112)

is the probability of having µ ≤ µ0. Inversion given some random number R ∈ [0, 1]
drawn from the uniform distribution is now requiring that Fd(µ−1) < R < Fd(µ).
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Using Pd(µ) =
∫
P (τ, µ)dτ the random event µ is determined by

µ−1∑
ν=1

rν < R

N∑
ν=1

rν ≤
µ∑

ν=1

rν . (113)
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Group 6b
Membranes

Group leader: Dr. Ilpo Vattulainen
Group: MSc Måns Elenius, MSc Jari Jalkanen,

MSc Ivan Degtyarenk

1 Motivation

Many problems in biophysics present several different time- and length scales.
From the atomic level, with lengths of a few angstroms (atom size) and times of
femtoseconds (time associated with bond vibrations) to macrolevel with seconds
and micro/millimetres [5]. To resolve physical questions, one needs to combine
experimental and theoretical (computational) means that complement each other
and focus on different scales in time and space. It is exceedingly difficult to obtain
detailed information of nano-sized domains through experiments, while atomic-
scale simulations can gauge atomic-scale phenomena in a rather straight-forward
manner using classical molecular dynamics simulations. The main problem con-
cerns the time and length scales in the middle: how to look at systems whose
sizes are of the order of 50-100 nm, and time scales of the order of 100-1000 ns.
These scales are beyond those that are doable by atomistic simulations; yet they
are also (in part) beyond the scales that can be probed by experiments. To under-
stand processes over these scales, one has to resort to multiscale modelling which
are based on coupling different techniques to each other in a systematic manner.
Hence gaining insight into the properties of complex soft matter systems over a
multitude of different scales. In a wide context, the main problem is to understand
how processes in complex bio systems can be modelled with sufficient accuracy,
such that only the key features of the problem are included.
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2 Simulating Model

Biological membranes, relatively large living structures, with interfaces composed
of two lipid monolayers whose hydrophobic sides are attached to each other such
that their contact with water is minimized. The opposite polar head group of
lipids are oriented towards water to maximize their contact with water phase.
Membranes found in living cells are very complicated and consists of hundreds of
different lipids and other fats. They also contain carbohydrates and proteins hav-
ing more or less known contributions to the functions of a living cell. A schematic
picture of a cell membrane can be found in Figure 1. Simulation models of cell
membranes are of course far less complicated, usually taking into account a maxi-
mum of three different kinds large biological molecules in addition to water. The
modelling molecules in the simulations are also simplified out of necessity; an or-
dinary lipid contains well over 100 atoms. Different levels of coarsening are used
in different models everything from grouping atoms identified as a functional unit
in the molecule to modelling the complete molecule as a single particle.
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Figure 1: Schematic picture of cell membrane (adopted from Human Biologyby
Daniel Chiras).
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3 Task and Methodology

The task set forward to the group was to try to find novel ways of simulating
membranes on a length scale of 100 nm and timescales of ?s. As guidance we
discussed with group leader Dr. Ilpo Vattulainen and read papers provided by
him. It probably should be mentioned, that none of us have had heavy background
in that field, before the workshop. The group work alternated between reading
papers and discussing ideas. Hence we came up with some ideas that we later
found in papers. Some of these are still mentioned below to better reflect the work
performed in the group. We kept our discussion to improvement of molecular level
simulations that still keep some of the molecular structure. We made this choice
mainly for two reasons. First we all felt that we had more knowledge in atomic and
molecular models and second Ilpo’s group in TKK, Finland is working with the
extreme coarsening of modelling each molecule as a single atom and performing
the complete simulation in two dimensions, ref. [3].

4 Ideas

The following list contains the ideas put forward by the group members during the
work. They are colour coded so that blue red means done before (put together with
a reference), blue means partly done and green means not done to our knowledge.

4.1 Integrate the electric interactions in the pair potential
(and tabulate)

Several simulation schemes seem to incorporate cut offs for both interatomic (Van
der Waals) interactions and electronic interactions. Still it seems like they are
kept different from each other and also that they are analytically calculated in
each step. We believe that there is room for improvement by integrating the
electrical interactions and the interatomic interactions and tabulate the two to
reduce calculations. Since this calculation is right in the kernel of the computation
it may increase performance significantly.

4.2 Identify slow and fast dynamics, integrate them in dif-
ferent ways

This has been done in ref. [1].
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4.3 Try to get completely rid of the shortest timescale
(atomic vibrations)

This has been done in ref. [2].

4.4 Increase masses of the light atoms (hydrogen) to in-
crease timescale

We have not seen this done in any membrane simulation. Probably the reason is
that it is by far most useful when you have explicit hydrogen in your model and all
models we have seen for membrane simulations are on a far coarser level than that.
Still there might possibly be some situations where this is useful. Mass increasing
allows using larger time step in MD simulations.

4.5 Try to integrate the water in the interactions in be-
tween the other particles

This has been done in reference [3].

4.6 Simulate the lipid tails using only one or two particles

We have not seen this level of coarsening, only several particles in each tail or
one particle for the complete molecule. There might be a problem to find a good
spherically symmetric interatomic potential that gives a reasonable behaviour for
this model. But it would definitely decrease calculations from the other models we
have seen that are trying to retain some of the molecular structure.

4.7 Use rigid molecules, fix angles/bonds

The idea is to treat the molecules as rigid bodies but still keep atoms or coarsened
parts of the molecule for the force calculations. This would get rid of all in-
tramolecular interactions including torsions and angles and would hence decrease
the force calculations significantly. Still it seems a bit counter intuitive that this
model should yield anything both new and correct, but you never know until you
have tried.

4.8 Discuss the use of MD/MC/kinetic MC - Use lattices?

We discussed how one could benefit from using molecular dynamics and Monte
Carlo in different ways and also tried to find schemes for kinetic Monte Carlo, but
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we did not get very far on this. There is an interesting paper, ref [4], where they
get better results from molecular dynamics than from Monte Carlo.

4.9 Model a monolayer using ”water” on one side and ”oil”
on the other side

This has most probably been done but we have not seen it in any of the papers we
have read. In ordinary membrane you have, as stated above, two layers of lipids
with their hydrophilic end pointing out of the membrane towards the surrounding
water and the hydrophobic end pointing inwards towards the hydrophobic tails
of the other layer. The idea here is to model an oil-like substance, simply a
particle type liking the hydrophobic tails and despising the hydrophilic heads, on
the ”tail-side” of the membrane so that you don’t have to model both layers of the
membrane. This will of course only save around half of the computational cost, as
compared to the orders of magnitude needed to reach the goals in the field, but
still it might prove an improvement.
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Group 6c
DNA knots

V. Borodin, M.Ganchenkova, M.Elenius

1 Physical problem

DNA chains can be considered as nanostrings with the length measured in terms
of base pairs it contains, L. They are grown initially as linear structures, but when
they become long enough, string entanglement and knot formation are possible.
When the ends of a chain are put together, ideally one would obtain a closed ring
(or, more precisely, a figure topologically identical to a ring). However, where a
string is sufficiently long and have freedom to move before the end joining, it can
become knotted. The sections of the whole chain occupied by ”localized” knots
behave differently from the ”unknot” sections, which for some purposes may be
considered as a favourable circumstance and for others - not. In order to make
simulations that explicitly treat the knots on a specified DNA chain, one needs
first of all some means to numerically localize the knots and to identify the lengths
of segments occupied by knots.

2 Computational task

To propose an idea of efficient and reliable algorithm for locating knots and sepa-
rating the whole chain into regions that can be treated as belonging to knots and
the sections that can be treated as knot-free.

2.1 Underlying problems

1. The first problem in reaching the final aim is an internal inconsistency. In-
deed, a knot in a purely topological sense is a closed manifold. On the other
hand, knot localization means separation of the whole chain into separate
unclosed segments, which can have no knots in topological sense.
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2. Even if we introduce a trick that tells us that a knot is fully confined within
a specified string section, it is not clear how to define the knot size in a way,
which is free from intuitive considerations.

3 Possible solution

A DNA chain is naturally discretized, which means that its most natural repre-
sentation is not by a continuous rope but rather by a string of beads, where each
individual ’bead’ marks the position of individual base pair. We may also assume
that the neighbouring beads are connected by imaginary ’bonds’, and define that
the spatial orientation of a bond defines the local chain orientation. It is addition-
ally convenient to introduce bond directions, so that any bead terminates exactly
two bonds so that one bond is terminated with its start and another - with its end.

The geometry of a chain is assumed strictly fixed.

The whole algorithm might then consist of two major parts

1. Topological. First of all, it makes sense to specify how many knots are
present. Since the initial configuration is closed, this can be done using purely
topological means (e.g. by calculation of Jones or HOMFLY polynomial).
If the total number of non-linked knots is N, it meant that it is possible
to make at least N cuts that will separate the total string into ”separate”
sections, each having exactly one ”sub-knot” (in a more complicated case
it might be possible to separate linked ”sub-knots” as well). The question
remains, where to make such cuts. However, after the cutting is done, knot
localization procedure is intuitively clear - one should tear off the beads at
the loose ends of a ’one-knot’ section as long as the knot remains identifiable
by topological means.

2. Geometrical. The key point in the algorithm is the localization of ”cut
points”. To achieve this aim, we should be able to uniquely decide for any
fixed finite-length string of beads, whether it contains a knot, or not. This
cannot be done by purely topological means, so some geometrical assump-
tions are inevitable, guided by purely intuitive feelings about what might be
considered as ”isolated knot”. In particular, we propose to introduced for
any finite-length string a ”tangent infinity closure” (TIC), that is - we de-
mand that any finite-length string section must be continued infinitely at the
ends exactly in the directions of its boundary bonds (conserving the bond
orientation). Such an infinite structure is now a uniquely identified knot.

Then we can proceed in the following way.

78



1. Select an arbitrary bond. No matter, where it is, its TIC is equivalent to
that of an unknot.

2. Add bonds in positive direction until TIC of the whole than remains that of
the unknot. Fix the ”positive”boundary at the bead, whose addition changes
the topology properties of TIC.

3. Remove bonds one by one, starting from the initial one until TIC equivalence
of the resulting bond to the unknot is restored. Fix the last removed bead
as a ”negative” boundary. The length of the section between a negative and
the next positive boundary can be defined as knot length in TIC approxi-
mation, while the distance between a positive and next negative boundary
(as measured in positive direction of the chain) - as a length of an unknot
section.

Now we can take the bond emerging from the ”positive boundary”bead and repeat
the cycle, until all the knots are identified. The procedure is unique for N >1,
but for a unique knot it is possible to cut the chain in many places compatible
with TIC approximation. Since we are interested in knot localization, it makes
sense to identify ALL possible unknot section and cut the longest one, which
will automatically define the shortest knot. However, to say, whether the knot is
localized, or not one needs additional purely geometrical criteria, based either on
the comparison of knot and unknot lengths, or on 3D confinement of knot and
unknot sections, or both. However, as far as the separation into knot and unknot
sections is done, this remains a straightforward task.

4 Conclusion

We propose the basic idea of a possible algorithm for separation of a closed knotted
string of beads into sections with individual knots. In practical cases (an evident
example is a ”knot inside knot”) this idea may require expansion, but the main
principle most probably works, if properly expanded. However, technical realiza-
tion requires more programming efforts that one might afford during the time span
of the workshop.
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