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Chapter 1

Preliminaries in linear algebra

During most parts of this course, vector spaces are over the field C of complex numbers. Often
any other algebraically closed field of characteristic zero could be used instead. In some parts
these assumptions are not used, and K denotes any field. We usually omit explicitly mentioning
the ground field, which should be clear from the context.

Definition 1.1. Let V,W be K-vector spaces. The space of linear maps (i.e. the space of homo-
morphisms ofK-vector spaces) from V to W is denoted by

Hom(V,W) =
{
T : V →W

∣∣∣ T is aK-linear map
}
.

The vector space structure on Hom(V,W) is with pointwise addition and scalar multiplication.
The (algebraic) dual of a vector space V is the space of linear maps from V to the ground field,

V∗ = Hom(V,K).

We denote the duality pairing by brackets 〈·, ·〉. The value of a dual vector ϕ ∈ V∗ on a vector v ∈ V
is thus usually denoted by 〈ϕ, v〉.

Definition 1.2. For T : V → W a linear map, the transpose is the linear map T∗ : W∗
→ V∗

defined by
〈T∗(ϕ), v〉 = 〈ϕ,T(v)〉 for all ϕ ∈W∗, v ∈ V.

1.1 On diagonalization of matrices

In this section, vector spaces are over the field C of complex numbers.

Recall first the following definitions.

Definition 1.3. The characteristic polynomial of a matrix A ∈ Cn×n is

pA(x) = det
(
xI − A

)
.

The minimal polynomial of a matrix A is the polynomial qA of smallest positive degree such that
qA(A) = 0, with the coefficient of highest degree term equal to 1.

The Cayley-Hamilton theorem states that the characteristic polynomial evaluated at the matrix
itself is the zero matrix, that is pA(A) = 0 for any square matrix A. An equivalent statement is
that the polynomial qA(x) divides pA(x). These facts follow explicitly from the Jordan normal form
discussed later in this section.
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Motivation and definition of generalized eigenvectors

Given a square matrix A, it is often convenient to diagonalize A. This means finding an invertible
matrix P (“a change of basis”), such that the conjugated matrix P A P−1 is diagonal. If, instead of
matrices, we think of a linear operator A from vector space V to itself, the equivalent question is
finding a basis for V consisting of eigenvectors of A.

Recall from basic linear algebra that (for example) any real symmetric matrix can be diagonalized.
Unfortunately, this is not the case with all matrices.

Example 1.4. Let λ ∈ C and

A =

 λ 1 0
0 λ 1
0 0 λ

 ∈ C3×3.

The characteristic polynomial of A is

pA(x) = det(xI − A) = (x − λ)3,

so we know that A has no other eigenvalues but λ. It follows from det(A − λI) = 0 that the
eigenspace pertaining to the eigenvalue λ is nontrivial, dim (Ker (A − λI)) > 0. Note that

A − λI =

 0 1 0
0 0 1
0 0 0

 ,
so that the image of A is two dimensional, dim (Im (A − λI)) = 2. By rank-nullity theorem,

dim (Im (A − λI)) + dim (Ker (A − λI)) = dim
(
C3

)
= 3,

so the eigenspace pertaining to λmust be one-dimensional. Thus the maximal number of linearly
independent eigenvectors of A we can have is one — in particular, there doesn’t exist a basis of C3

consisting of eigenvectors of A.

We still take a look at the action of A in some basis. Let

w1 =

 1
0
0

 w2 =

 0
1
0

 w3 =

 0
0
1

 .
Then the following “string” indicates how A − λImaps these vectors

w3
A−λ
7→ w2

A−λ
7→ w1

A−λ
7→ 0.

In particular we see that (A − λI)3 = 0.

The “string” in the above example illustrates and motivates the following definition.

Definition 1.5. Let V be a vector space and A : V → V be a linear map. A vector v ∈ V is said to
be a generalized eigenvector of eigenvalue λ if for some positive integer p we have (A−λI)p v = 0.
The set of these generalized eigenvectors is called the generalized eigenspace of A pertaining to
eigenvalue λ.

With p = 1 the above would correspond to the usual eigenvectors.
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The Jordan canonical form

Although not every matrix has a basis of eigenvectors, we will see that every complex square
matrix has a basis of generalized eigenvectors. More precisely, if V is a finite dimensional complex
vector space and A : V → V is a linear map, then there exists eigenvalues λ1, λ2, . . . , λk of A (not
necessarily distinct) and a basis {w( j)

m : 1 ≤ j ≤ k, 1 ≤ m ≤ n j} of V which consists of “strings” as
follows

w(1)
n1

A−λ1
7→ w(1)

n1−1
A−λ1
7→ · · ·

A−λ1
7→ w(1)

2
A−λ1
7→ w(1)

1
A−λ1
7→ 0

w(2)
n2

A−λ2
7→ w(2)

n2−1
A−λ2
7→ · · ·

A−λ2
7→ w(2)

2
A−λ2
7→ w(2)

1
A−λ2
7→ 0

...
...

...

w(k)
nk

A−λk
7→ w(k)

nk−1
A−λk
7→ · · ·

A−λk
7→ w(k)

2
A−λk
7→ w(k)

1
A−λk
7→ 0.

(1.1)

Note that in this basis the matrix of A takes the “block diagonal form”

A =


Jλ1;n1 0 0 · · · 0

0 Jλ2;n2 0 · · · 0
0 0 Jλ3;n3 0
...

...
. . .

...
0 0 0 · · · Jλk;nk


, (1.2)

where the blocks correspond to the subspaces spanned by w( j)
1 ,w

( j)
2 , . . . ,w

( j)
n j

and the matrices of the
blocks are the following “Jordan blocks”

Jλ j;n j =



λ j 1 0 · · · 0 0
0 λ j 1 · · · 0 0
0 0 λ j 0 0
...

...
. . .

...
0 0 0 · · · λ j 1
0 0 0 · · · 0 λ j


∈ Cn j×n j .

Definition 1.6. A matrix of the form (1.2) is said to be in Jordan normal form (or Jordan canonical
form).

The characteristic polynomial of the a matrix A in Jordan canonical form is

pA(x) = det (xI − A) =

k∏
j=1

(x − λ j)n j .

Note also that if we write a block Jλ;n = λI + N as a sum of diagonal part λI and upper triangular
part N, then the latter is nilpotent: Nn = 0. In particular the assertion pA(A) = 0 of the Cayley-
Hamilton theorem can be seen immediately for matrices which are in Jordan canonical form.

Definition 1.7. Two n × n square matrices A and B are said to be similar if A = P B P−1 for some
invertible matrix P.

It is in this sense that any complex square matrix can be put to Jordan canonical form, the matrix
P implements a change of basis to a basis consisting of the strings of the above type. Below is a
short and concrete proof.

Theorem 1.8
Given any complex n × n matrix A, there exists an invertible matrix P such that the conjugated
matrix P A P−1 is in Jordan normal form.
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Proof. In view of the above discussion it is clear that the statement is equivalent to the following:
if V is a finite dimensional complex vector space and A : V → V a linear map, then there exists a
basis of V consisting of strings as in (1.1).

We prove the statement by induction on n = dim (V). The case n = 1 is clear. As an induction
hypothesis, assume that the statement is true for all linear maps of vector spaces of dimension
less than n.

Take any eigenvalue λ of A (any root of the characteristic polynomial). Note that

dim (Ker (A − λI)) > 0,

and since n = dim (Ker (A − λI))+dim (Im (A − λI)), the dimension of the image of A−λI is strictly
less than n. Denote

R = Im (A − λI) and r = dim (R) < n.

Note that R is an invariant subspace for A, that is A R ⊂ R (indeed, A (A−λI) v = (A−λI) A v). We
can use the induction hypothesis to the restriction of A to R, to find a basis

{w( j)
m : 1 ≤ j ≤ k, 1 ≤ m ≤ n j}

of R in which the action of A is described by the strings as in (1.1).

Let q = dim (R ∩ Ker (A − λI)). This means that in R there are q linearly independent eigenvectors
of A with eigenvalue λ. The vectors at the right end of the strings span the eigenspaces of A in
R, so we assume without loss of generality that the last q strings correspond to eigenvalue λ and
others to different eigenvalues: λ1, λ2, . . . , λk−q , λ and λk−q+1 = λk−q+2 = · · · = λk = λ. For all j
such that k − q < j ≤ k the vector w( j)

n j
is in R, so we can choose

y( j)
∈ V such that (A − λI) y( j) = w( j)

n j
.

The vectors y( j) extend the last q strings from the left.

Find vectors
z(1), z(2), . . . , z(n−r−q)

which complete the linearly independent collection

w(k−q+1)
1 , . . . ,w(k−1)

1 ,w(k)
1

to a basis of Ker (A − λI). We have now found n vectors in V, which form strings as follows

z(1) A−λ
7→ 0

...
...

z(n−r−q) A−λ
7→ 0

w(1)
n1

A−λ1
7→ · · ·

A−λ1
7→ w(1)

1
A−λ1
7→ 0

...
...

...

w(k−q)
nk−q

A−λk−q
7→ · · ·

A−λk−q
7→ w(k−q)

1

A−λk−q
7→ 0

y(k−q+1) A−λ
7→ w(k−q+1)

nk−q+1

A−λ
7→ · · ·

A−λ
7→ w(k−q+1)

1
A−λ
7→ 0

...
...

...
...

y(k) A−λ
7→ w(k)

nk−1
A−λ
7→ · · ·

A−λ
7→ w(k)

1
A−λ
7→ 0.

It suffices to show that these vectors are linearly independent. Suppose that a linear combination
of them vanishes

k∑
j=k−q+1

α j y( j) +
∑
j,m

β j,m w( j)
m +

n−r−q∑
l=1

γl z(l) = 0.
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From the string diagram we see that the image of this linear combination under A − λI is a linear
combination of the vectors w( j)

m , which are linearly independent, and since the coefficient of w( j)
n j

is

α j, we get α j = 0 for all j. Now recalling that {w( j)
m } is a basis of R, and {w( j)

1 : k − q < j ≤ k} ∪ {z(l)
} is

a basis of Ker (A − λI), and {w( j)
1 : k − q < j ≤ k} is a basis of R ∩ Ker (A − λI), we see that all the

coefficients in the linear combination must vanish. This finishes the proof. �

Exercise 1 (Around the Jordan normal form)
(a) Find two matrices A,B ∈ Cn×n, which have the same minimal polynomial and the same

characteristic polynomial, but which are not similar.

(b) Show that the Jordan normal form of a matrix A ∈ Cn×n is unique up to permutation of the
Jordan blocks. In other words, if C1 = P1 A P−1

1 and C2 = P2 A P−1
2 are both in Jordan normal

form, C1 with blocks Jλ1,n1 , . . . Jλk;nk and C2 with blocks Jλ′1,n′1 , . . . Jλ′l ;n′l , then k = l and there is a
permutation σ ∈ Sk such that λ j = λ′σ( j) and n j = n′σ( j) for all j = 1, 2, . . . , k.

(c) Show that any two matrices with the same Jordan normal form up to permutation of blocks
are similar.

Let us make some preliminary remarks of the interpretation of Jordan decomposition from the
point of view of representations. We will return to this when we discuss representations of
algebras, but a matrix determines a representation of the quotient of the polynomial algebra by the
ideal generated by the minimal polynomial of the matrix. Diagonalizable matrices can be thought
of as a simple example of completely reducible representations: the vector space V is a direct
sum of eigenspaces of the matrix. In particular, if all the roots of the minimal polynomial have
multiplicity one, then all representations are completely reducible. Non-diagonalizable matrices
are a simple example of a failure of complete reducibility. The Jordan blocks Jλ j;n j correspond to
subrepresentations (invariant subspaces) which are indecomposable, but not irreducible if n j > 1.

1.2 On tensor products of vector spaces

A crucial concept in the course is that of a tensor product of vector spaces. Here, vector spaces
can be over any field K, but it should be noted that the concept of tensor product depends of the
field. In this course we only need tensor products of complex vector spaces.

Definition 1.9. Let V1,V2,W be vector spaces. A map β : V1 ×V2 →W is called bilinear if for all
v1 ∈ V1 the map v2 7→ β(v1, v2) is linear V2 →W and for all v2 ∈ V2 the map v1 7→ β(v1, v2) is linear
V1 →W.

Multilinear maps V1 × V2 × · · · × Vn →W are defined similarly.

The tensor product is a space which allows us to replace some bilinear (more generally multilinear)
maps by linear maps.

Definition 1.10. Let V1 and V2 be two vector spaces. A tensor product of V1 and V2 is a vector
space U together with a bilinear map φ : V1 ×V2 → U such that the following universal property
holds: for any bilinear map β : V1 × V2 → W, there exists a unique linear map β̄ : U → W such
that the diagram

V1 × V2
β

- W

U

β̄

-

φ
-

,

9
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commutes, that is β = β̄ ◦ φ.

Proving the uniqueness (up to canonical isomorphism) of an object defined by a universal iso-
morphism is a standard exercise in abstract nonsense. Indeed, if we suppose U′ with a bilinear
map φ′ : V1 × V2 → U′ is another tensor product, then the universal property of U gives a linear
map φ̄′ : U→ U′ such that φ′ = φ̄′ ◦ φ. Likewise, the universal property of U′ gives a linear map
φ̄ : U′ → U such that φ = φ̄ ◦ φ′. Combining these we get

idU ◦ φ = φ = φ̄ ◦ φ′ = φ̄ ◦ φ̄′ ◦ φ.

But here are two ways of factorizing the map φ itself, so by the uniqueness requirement in the
universal property we must have equality idU = φ̄◦ φ̄′. By a similar argument we get idU′ = φ̄′ ◦ φ̄.
We conclude that φ̄ and φ̄′ are isomorphisms (and inverses of each other).

Now that we know that tensor product is unique (up to canonical isomorphism), we use the
following notations

U = V1 ⊗ V2 and

V1 × V2 3 (v1, v2)
φ
7→ v1 ⊗ v2 ∈ V1 ⊗ V2.

An explicit construction which shows that tensor products exist is done in Exercise 2. The same
exercise establishes two fundamental properties of the tensor product:

• If (v(1)
i )i∈I is a linearly independent collection in V1 and (v(2)

j ) j∈J is a linearly independent

collection in V2, then the collection
(
v(1)

i ⊗ v(2)
j

)
(i, j)∈I×J

is linearly independent in V1 ⊗ V2.

• If the collection (v(1)
i )i∈I spans V1 and the collection (v(2)

j ) j∈J spans V2, then the collection(
v(1)

i ⊗ v(2)
j

)
(i, j)∈I×J

spans the tensor product V1 ⊗ V2.

It follows that if (v(1)
i )i∈I and (v(2)

j ) j∈J are bases of V1 and V2, respectively, then(
v(1)

i ⊗ v(2)
j

)
(i, j)∈I×J

is a basis of the tensor product V1 ⊗ V2. In particular if V1 and V2 are finite dimensional, then

dim (V1 ⊗ V2) = dim (V1) dim (V2) .

Exercise 2 (A construction of the tensor product)
We saw that the tensor product of vector spaces, defined by the universal property, is unique
(up to isomorphism) if it exists. The purpose of this exercise is to show existence by an explicit
construction, under the simplifying assumption that V and W are function spaces (it is easy to see
that this can be assumed without loss of generality).

For any set X, denote byKX the vector space ofK valued functions on X, with addition and scalar
multiplication defined pointwise. Assume that V ⊂ KX and W ⊂ KY for some sets X and Y. For
f ∈ KX and g ∈ KY, define f ⊗ g ∈ KX×Y by(

f ⊗ g
)
(x, y) = f (x) g(y).

Also set
V ⊗W = span

{
f ⊗ g

∣∣∣ f ∈ V, g ∈W
}
,

so that the map ( f , g) 7→ f ⊗ g is a bilinear map V ×W → V ⊗W.

(a) Show that if ( fi)i∈I is a linearly independent collection in V and (g j) j∈J is a linearly independent
collection in W, then the collection

(
fi ⊗ g j

)
(i, j)∈I×J

is linearly independent in V ⊗W.

10
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(b) Show that if ( fi)i∈I is a collection that spans V and (g j) j∈J is collection that spans W, then the
collection

(
fi ⊗ g j

)
(i, j)∈I×J

spans V ⊗W.

(c) Conclude that if ( fi)i∈I is a basis of V and (g j) j∈J is a basis of W, then
(

fi ⊗ g j

)
(i, j)∈I×J

is a basis

of V ⊗W. Conclude furthermore that V ⊗W, equipped with the bilinear map φ( f , g) = f ⊗ g
from V ×W to V ⊗W, satisfies the universal property defining the tensor product.

A tensor of the form v(1)
⊗ v(2) is called a simple tensor. By part (b) of the above exercise, any

t ∈ V1 ⊗ V2 can be written as a linear combination of simple tensors

t =

n∑
α=1

v(1)
α ⊗ v(2)

α ,

for some v(1)
α ∈ V1 and v(2)

α ∈ V2, α = 1, 2, . . . ,n. Note, however, that such an expression is
by no means unique! The smallest n for which it is possible to write t as a sum of simple
tensors is called the rank of the tensor, denoted by n = rank(t). An obvious upper bound is
rank(t) ≤ dim (V1) dim (V2). One can do much better in general, as follows from the following
useful observation.

Lemma 1.11
Suppose that

t =

n∑
α=1

v(1)
α ⊗ v(2)

α ,

where n = rank(t). Then both (v(1)
α )n

α=1 and (v(2)
α )n

α=1 are linearly independent collections.

Proof. Suppose, by contraposition, that there is a linear relation

n∑
α=1

cαv(1)
α = 0,

where not all the coefficients are zero. We may assume that cn = 1. Thus v(1)
n = −

∑n−1
α=1 cαv(1)

α and
using bilinearity we simplify t as

t =

n−1∑
α=1

v(1)
α ⊗ v(2)

α + v(1)
n ⊗ v(2)

n =

n−1∑
α=1

v(1)
α ⊗ v(2)

α −

n−1∑
α=1

cα v(1)
α ⊗ v(2)

n =

n−1∑
α=1

v(1)
α ⊗

(
v(1)
α − cαv(2)

n

)
which contradicts minimality of n = rank(t). The linear independence of (v(2)

α ) is proven similarly.
�

As a consequence we get a better upper bound

rank(t) ≤ min {dim (V1) ,dim (V2)} .

Taking tensor products with the one-dimensional vector space K does basically nothing: for any
vector space V we can canonically identify

V ⊗K � V and K ⊗ V � V
v ⊗ λ 7→ λv λ ⊗ v 7→ λv.

By the obvious correspondence of bilinear maps V1 ×V2 →W and V2 ×V1 →W, one also always
gets a canonical identification

V1 ⊗ V2 � V2 ⊗ V1.

11



Hopf algebras and representations Spring 2011

Almost equally obvious correspondences give the canonical identifications

(V1 ⊗ V2) ⊗ V3 � V1 ⊗ (V2 ⊗ V3)

etc., which allow us to omit parentheses in multiple tensor products.

A slightly more interesting property than the above obvious identifications, is the existence of an
embedding

V2 ⊗ V∗1 ↪→ Hom(V1,V2)

which is obtained by associating to v2 ⊗ ϕ the linear map

v1 7→ 〈ϕ, v1〉 v2

(and extending linearly from the simple tensors to all tensors). The following exercise verifies
among other things that this is indeed an embedding and that in the finite dimensional case the
embedding becomes an isomorphism.

Exercise 3 (The relation between Hom(V,W) and W ⊗ V∗)

(a) For w ∈W and ϕ ∈ V∗, we associate to w ⊗ ϕ the following map V →W

v 7→ 〈ϕ, v〉w.

Show that the linear extension of this defines an injective linear map

W ⊗ V∗ −→ Hom(V,W).

(b) Show that if both V and W are finite dimensional, then the injective map in (a) is an
isomorphism

W ⊗ V∗ � Hom(V,W).

Show that under this identification, the rank of a tensor t ∈ W ⊗ V∗ is the same as the rank
of a matrix of the corresponding linear map T ∈ Hom(V,W).

Definition 1.12. When
f : V1 →W1 and g : V2 →W2

are linear maps, then there is a linear map

f ⊗ g : V1 ⊗ V2 →W1 ⊗W2

defined by the condition

( f ⊗ g)(v1 ⊗ v2) = f (v1) ⊗ g(v2) for all v1 ∈ V1, v2 ∈ V2.

The above map clearly depends bilinearly on ( f , g), so we get a canonical map

Hom(V1,W1) ⊗Hom(V2,W2) ↪→ Hom(V1 ⊗ V2,W1 ⊗W2),

which is easily seen to be injective. When all the vector spaces V1,W1,V2,W2 are finite dimensional,
then the dimensions of both sides are given by

dim (V1) dim (V2) dim (W1) dim (W2) ,

so in this case the canonical map is an isomorphism

Hom(V1,W1) ⊗Hom(V2,W2) � Hom(V1 ⊗ V2,W1 ⊗W2).

As a particular case of the above, interpreting the dual of a vector space V as V∗ = Hom(V,K) and
usingK⊗K � K, we see that the tensor product of duals sits inside the dual of the tensor product.
Explicitly, if V1 and V2 are vector spaces and ϕ1 ∈ V∗1, ϕ2 ∈ V∗2, then

v1 ⊗ v2 7→ 〈ϕ1, v1〉 〈ϕ2, v2〉

12
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defines an element of the dual of V1 ⊗ V2. To summarize, we have an embedding

V∗1 ⊗ V∗2 ↪→ (V1 ⊗ V2)∗.

If V1 and V2 are finite dimensional this becomes an isomorphism

V∗1 ⊗ V∗2 � (V1 ⊗ V2)∗.

As a remark, later in the course we will notice an asymmetry in the dualities between algebras and
coalgebras, Theorems 3.34 and 3.45. This asymmetry is essentially due to the fact that in infinite
dimensional case one only has an inclusion V∗ ⊗ V∗ ⊂ (V ⊗ V)∗ but not an equality.

The transpose behaves well under the tensor product of linear maps.

Lemma 1.13
When f : V1 →W1 and g : V2 →W2 are linear maps, then the map

f ⊗ g : V1 ⊗ V2 →W1 ⊗W2

has a transpose ( f ⊗ g)∗ which makes the following diagram commute

(W1 ⊗W2)∗
( f ⊗ g)∗

- (V1 ⊗ V2)∗

W∗

1 ⊗W∗

2

∪

6

f ∗ ⊗ g∗
- V∗1 ⊗ V∗2.

∪

6

Proof. Indeed, for ϕ ∈W∗

1, ψ ∈W∗

2 and any simple tensor v1 ⊗ v2 ∈ V1 ⊗ V2 we compute

〈( f ∗ ⊗ g∗)(ϕ ⊗ ψ), v1 ⊗ v2〉 = 〈 f ∗(ϕ) ⊗ g∗(ψ), v1 ⊗ v2〉

= 〈 f ∗(ϕ), v1〉 〈g∗(ψ), v2〉

= 〈ϕ, f (v1)〉 〈ψ, g(v2)〉
= 〈ϕ ⊗ ψ, f (v1) ⊗ g(v2)〉
= 〈ϕ ⊗ ψ, ( f ⊗ g)(v1 ⊗ v2)〉
= 〈( f ⊗ g)∗(ϕ ⊗ ψ), v1 ⊗ v2〉.

�
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Chapter 2

Representations of finite groups

We begin by taking a brief look at the classical topic of representations of finite groups. Here
many things are easier than later in the course when we discuss representations of “quantum
groups”. The most important result is that all finite dimensional representations are direct sums
of irreducible representations, of which there are only finitely many.

2.1 Reminders about groups and related concepts

Definition 2.1. A group is a pair (G, ∗), where G is a set and ∗ is a binary operation on G

∗ : G × G→ G (g, h) 7→ g ∗ h

such that the following hold

“Associativity”: g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3 for all g1, g2, g3 ∈ G

“Neutral element”: there exists an element e ∈ G s.t. for all g ∈ G we have g ∗ e = g = e ∗ g

“Inverse”: for any g ∈ G, there exists an element g−1
∈ G such that g ∗ g−1 = e = g−1

∗ g

A group (G, ∗) is said to be finite if its order |G| (that is the cardinality of G) is finite.

We usually omit the notation for the binary operation ∗ and write simply gh := g ∗h. For the binary
operation in abelian (i.e. commutative) groups we often, though not always, use the additive
symbol +.

Example 2.2. The following are abelian groups

- a vector space V with the binary operation + of vector addition

- the setK \ {0} of nonzero numbers in a field with the binary operation of multiplication

- the infinite cyclic group Z of integers with the binary operation of addition

- the cyclic group of order N consisting of all Nth complex roots of unity
{
e2πik/N

∣∣∣ k = 0, 1, 2, . . . ,N − 1
}
,

with the binary operation of complex multiplication.

We also usually abbreviate and write only G for the group (G, ∗).

Example 2.3. Let X be a set. Then S(X) :=
{
σ : X→ X bijective

}
with composition of functions is

a group, called the symmetric group of X.

In the case X = {1, 2, 3, . . . ,n}we denote the symmetric group by Sn.

15
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Example 2.4. Let V be a vector space and GL(V) = Aut(V) =
{
A : V → V linear bijection

}
with composition of functions as the binary operation. Then GL(V) is a group, called the
general linear group of V (or the automorphism group of V). When V is finite dimensional,
dim (V) = n, and a basis of V has been chosen, then GL(V) can be identified with the group of
n × n matrices having nonzero determinant, with matrix product as the group operation.

Let K be the ground field and V = Kn the standard n-dimensional vector space. In this case we
denote GL(V) = GLn(K).

Example 2.5. The group D4 of symmetries of a square, or the dihedral group of order 8, is the
group with two generators

r “rotation by π/2” m “reflection”

and relations
r4 = e m2 = e rmrm = e.

Definition 2.6. Let (G1, ∗1) and (G2, ∗2) be groups. A mapping f : G1 → G2 is said to be a (group)
homomorphism if for all g, h ∈ G1

f (g ∗1 h) = f (g) ∗2 f (h).

Example 2.7. The determinant function A 7→ det(A) from the matrix group GLn(C) to the multi-
plicative group of non-zero complex numbers, is a homomorphism since det(A B) = det(A) det(B).

The reader should be familiar with the notions of subgroup, normal subgroup, quotient group,
canonical projection, kernel, isomorphism etc.

One of the most fundamental recurrent principles in mathematics is the isomorphism theorem.
We recall that in the case of groups it states the following.

Theorem 2.8
Let G and H be groups and f : G→ H a homomorphism. Then

1◦) Im
(

f
)

:= f (G) ⊂ H is a subgroup.

2◦) Ker
(

f
)

:= f−1({eH}) ⊂ G is a normal subgroup.

3◦) The quotient group G/Ker
(

f
)

is isomorphic to Im
(

f
)
.

More precisely, there exists an injective homomorphism f̄ : G/Ker
(

f
)
→ Im

(
f
)

such that the
following diagram commutes

G
f

- H

G/Ker
(

f
) f̄

-

π
-

,

where π : G→ G/Ker
(

f
)

is the canonical projection.

The reader has surely encountered isomorphism theorems for several algebraic structures already
— the following table summarizes the corresponding concepts in a few familiar cases

16
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Structure Morphism f Image Im
(

f
)

Kernel Ker
(

f
)

group group homomorphism subgroup normal subgroup
vector space linear map vector subspace vector subspace

ring ring homomorphism subring ideal
...

...
...

...

We will encounter isomorphism theorems for yet many other algebraic structures during this
course: representations (modules), algebras, coalgebras, bialgebras, Hopf algebras, . . . . The idea
is always the same, and the proofs only vary slightly, so we will not give full details in all cases.

A word of warning: since kernels, images, quotients etc. of different algebraic structures are
philosophically so similar, we use the same notation for all. It should be clear from the context
what is meant in each case. Usually, for example, Ker

(
ρ
)

would mean the kernel of a group
homomorphism ρ : G→ GL(V) (a normal subgroup of G), whereas Ker

(
ρ(g)

)
would then signify

the kernel of the linear map ρ(g) : V → V (a vector subspace of V, which incidentally is {0} when
ρ(g) ∈ GL(V)).

2.2 Representations: Definition and first examples

Definition 2.9. Let G be a group and V a vector space. A representation of G in V is a group
homomorphism G→ GL(V).

Suppose ρ : G→ GL(V) is a representation. For any g ∈ G, the image ρ(g) is a linear map V → V.
When the representation ρ is clear from context (and maybe also when it is not), we denote the
images of vectors by this linear map simply by g.v := ρ(g) v ∈ V, for v ∈ V. With this notation the
requirement that ρ is a homomorphism reads (g h).v = g.(h.v). It is convenient to interpret this as a
left multiplication of vectors v ∈ V by elements g of the group G. Thus interpreted, we say that V
is a (left) G-module (although it would be more appropriate to call it aK[G]-module, whereK[G]
is the group algebra of G).

Example 2.10. Let V be a vector space and set ρ(g) = idV for all g ∈ G. This is called the
trivial representation of G in V. If no other vector space is clear from the context, the trivial
representation means the trivial representation in the one dimensional vector space V = K.

Example 2.11. The symmetric group Sn for n ≥ 2 has another one dimensional representation
called the alternating representation. This is the representation given byρ(σ) = sign(σ) idK, where
sign(σ) is minus one when the permutation σ is the product of odd number of transpositions, and
plus one when σ is the product of even number of transpositions.

Example 2.12. Let D4 be the dihedral group of order 8, with generators r,m and relations r4 = e,
m2 = e, rmrm = e. Define the matrices

R =

[
0 −1
1 0

]
and M =

[
−1 0
0 1

]
.

Since R4 = I, M2 = I, RMRM = I, there exists a homomorphism ρ : D4 → GL2(R) such that
ρ(r) = R, ρ(m) = M. Such a homomorphism is unique since we have given the values of it on
generators r,m of D4. If we think of the square in the plane R2 with vertices A = (1, 0), B = (0, 1),
C = (−1, 0), D = (0,−1), then the linear maps ρ(g), g ∈ D4, are precisely the eight isometries of the
plane which preserve the square ABCD. Thus it is very natural to represent the group D4 in a two
dimensional vector space!

A representation ρ is said to be faithful if it is injective, i.e. if Ker
(
ρ
)

= {e}. The representation of

17
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the symmetry group of the square in the last example is faithful, it could be taken as a defining
representation of D4.

When the ground field is C, we might want to write the linear maps ρ(g) : V → V in their Jordan
canonical form. But we observe immediately that the situation is as good as it could get:

Lemma 2.13
Let G be a finite group, V a finite dimensional (complex) vector space, and ρ a representation of G
in V. Then, for any g ∈ G, the linear map ρ(g) : V → V is diagonalizable.

Proof. Observe that gn = e for some positive integer n (for example the order of the element g or
the order of the group G). Thus we have ρ(g)n = ρ(gn) = ρ(e) = idV. This says that the minimal
polynomial of ρ(g) divides xn

− 1, which only has roots of multiplicity one. Therefore the Jordan
normal form of ρ(g) can only have blocks of size one. �

We still continue with an example (or definition) of representation that will serve as useful tool
later.

Example 2.14. Let ρ1, ρ2 be two representations of a group G in vector spaces V1,V2, respectively.
Then the space of linear maps between the two representations

Hom(V1,V2) = {T : V1 → V2 linear}

becomes a representation by setting

g.T = = ρ2(g) ◦ T ◦ ρ1(g−1)

for all T ∈ Hom(V1,V2), g ∈ G. As usual, we often omit the explicit notation for the representations
ρ1, ρ2, and write simply

(g.T)(v) = g.
(
T(g−1.v)

)
for any v ∈ V1.

To check that this indeed defines a representation, we compute(
g1.(g2.T)

)
(v) = g1.

(
(g2.T)(g−1

1 .v)
)

= g1.g2.
(
T(g−1

2 .g
−1
1 .v)

)
= g1g2.

(
T
(
(g1g2)−1.v

))
=

(
(g1g2).T

)
(v).

Definition 2.15. Let G be a group and V1,V2 two G-modules (=representations). A linear map
T : V1 → V2 is said to be a G-module map (sometimes also called a G-linear map) if T(g.v) = g.T(v)
for all g ∈ G, v ∈ V.

Note that T ∈ Hom(V1,V2) is a G-module map if and only if g.T = T for all g ∈ G, when we use
the representation of Example 2.14 on Hom(V1,V2). We denote by HomG(V1,V2) ⊂ Hom(V1,V2)
the space of G-module maps from V1 to V2.

Exercise 4 (Dual representation)
Let G be a finite group and ρ : G → GL(V) be a representation of G in a finite dimensional
(complex) vector space V.

(a) Show that any eigenvalue λ of ρ(g), for any g ∈ G, satisfies λ|G| = 1.

(b) Recall that the dual space of V is V∗ = { f : V → C linear map}. For g ∈ G and f ∈ V∗ define
ρ′(g). f ∈ V∗ by the formula

〈ρ′(g). f , v〉 = 〈 f , ρ(g−1).v〉 for all v ∈ V.

Show that ρ′ : G→ GL(V∗) is a representation.

18
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(c) Show that Tr(ρ′(g)) is the complex conjugate of Tr(ρ(g)).

Exercise 5 (A two dimensional irreducible representation of S3)
Find a two-dimensional irreducible representation of the symmetric group S3.
Hint: Consider the three-cycles, and see what different transpositions would do to the eigenvectors
of a three-cycle.

Definition 2.16. For G a group, an element g2 ∈ G is said to be conjugate to g1 ∈ G if there exists

a h ∈ G such that g2 = h g1 h−1. Being conjugate is an equivalence relation and conjugacy classes
of the group G are the equivalence classes of this equivalence relation.

Exercise 6 (Dihedral group of order 8)
The group D4 of symmetries of the square is the group with two generators, r and m, and relations
r4 = e, m2 = e, rmrm = e.

(a) Find the conjugacy classes of D4.

(b) Find four non-isomorphic one dimensional representations of D4.

(c) There exists a unique group homomorphism ρ : G→ GL2(C) such that

ρ(r) =

[
0 −1
1 0

]
ρ(m) =

[
−1 0
0 1

]
(here, as usual, we identify linear maps C2

→ C2 with their matrices in the standard basis).
Check that this two dimensional representation is irreducible.

2.3 Subrepresentations, irreducibility and complete reducibility

Definition 2.17. Let ρ be a representation of G in V. If V′ ⊂ V is a subspace and if ρ(g) V′ ⊂ V′

for all g ∈ G (we say that V′ is an invariant subspace), then taking the restriction to the invariant
subspace, g 7→ ρ(g)|V′ defines a representation of G in V′ called a subrepresentation of ρ.

We also call V′ a submodule of the G-module V.

The subspaces {0} ⊂ V and V ⊂ V are always submodules.

Example 2.18. Let T : V1 → V2 be a G-module map. The image Im (T) = T(V1) ⊂ V2 is a
submodule, since a general vector of the image can be written as w = T(v), and g.w = g.T(v) =
T(g.v) ∈ Im (T). The kernel Ker (T) = T−1({0}) ⊂ V1 is a submodule, too, since if T(v) = 0 then
T(g.v) = g.T(v) = g.0 = 0.

Example 2.19. When we consider Hom(V1,V2) as a representation as in Example 2.14, the
subspace HomG(V1,V2) ⊂ Hom(V1,V2) of G-module maps is a subrepresentation, which, by the
remark after Definition 2.15, is a trivial representation in the sense of Example 2.10.

Definition 2.20. Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2) be representations of G in vector
spaces V1 and V2, respectively. Let V = V1⊕V2 be the direct sum vector space. The representation
ρ : G→ GL(V) given by

ρ(g)(v1 + v2) = ρ1(g)v1 + ρ2(g)v2 when v1 ∈ V1 ⊂ V, v2 ∈ V2 ⊂ V

is called the direct sum representation of ρ1 and ρ2.

Both V1 and V2 are submodules of V1 ⊕ V2.
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Definition 2.21. Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2) be two representations of G. We
make the tensor product space V1 ⊗ V2 a representation by setting for simple tensors

ρ(g) (v1 ⊗ v2) = (ρ1(g)v1) ⊗ (ρ2(g)v2)

and extending the definition linearly to the whole of V1 ⊗ V2. Clearly for simple tensors we have

ρ(h)ρ(g) (v1 ⊗ v2) =
(
ρ1(h)ρ1(g)v1

)
⊗

(
ρ2(h)ρ2(g)v2

)
=

(
ρ1(hg)v1

)
⊗

(
ρ2(hg)v2

)
= ρ(hg) (v1 ⊗ v2)

and since both sides are linear, we have ρ(h)ρ(g) t = ρ(hg) t for all t ∈ V1 ⊗ V2, so that ρ : G →
GL(V1 ⊗ V2) is indeed a representation.

A key property of representations of finite groups is that any invariant subspace has a complemen-
tary invariant subspace in the following sense. An assumption is needed of the ground field: we
need to divide by the order of the group, so the order must not be a multiple of the characteristic
of the field. In practise we only work with complex representations, so there is no problem.

Proposition 2.22
Let G be a finite group. If V′ is a submodule of a G-module V, then there is a submodule V′′ ⊂ V
such that V = V′ ⊕ V′′ as a G-module.

Proof. First choose any complementary vector subspace U for V′, that is U ⊂ V′ such that V = V′⊕U
as a vector space. Let π′ : V → V′ be the canonical projection corresponding to this direct sum,
that is

π′(v′ + u) = v′ when v′ ∈ V′, u ∈ U.

Define
π(v) =

1
|G|

∑
g∈G

g.π′(g−1.v).

Observe thatπ|V′ = idV′ and Im (π) ⊂ V′, in other words thatπ is a projection from V to V′. If we set
V′′ = Ker (π), then at least V = V′ ⊕V′′ as a vector space. To show that V′′ is a subrepresentation,
it suffices to show that π is a G-module map. This is checked by doing the change of summation
variable g̃ = h−1g in the following

π(h.v) =
1
|G|

∑
g∈G

g.π′(g−1.h.v) =
1
|G|

∑
g∈G

g.π′
(
(h−1g)−1.v

)
=

1
|G|

∑
g̃∈G

hg̃.π′
(
g̃−1.v

)
= h.π(v).

We conclude that V′′ = Ker (π) ⊂ V is a subrepresentation and thus V = V′⊕V′′ as a representation.
�

Definition 2.23. Let ρ : G→ GL(V) be a representation. If there are no other subrepresentations
but those corresponding to {0} and V, then we say that ρ is an irreducible representation, or that
V is a simple G-module.

Proposition 2.22, with an induction on dimension of the G-module V, gives the fundamental result
about representations of finite groups called complete reducibility, as stated in the following. We
will perform this induction in more detail in Proposition 3.18 when we discuss the complete
reducibility and semisimplicity of algebras.

Corollary 2.24
Let G be a finite group and V a finite dimensional G-module. Then, as representations, we have

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn,

where each subrepresentation V j ⊂ V, j = 1, 2, . . . ,n, is an irreducible representation of G.
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Exercise 7 (An example of tensor products and complete reducibility with D4)
The group D4 is the group with two generators, r and m, and relations r4 = e, m2 = e, rmrm = e. Re-
call that we have seen four one-dimensional and one two-dimensional irreducible representation
of D4 in Exercise 6. Let V be the two dimensional irreducible representation of D4 given by

r 7→
[

0 −1
1 0

]
m 7→

[
−1 0
0 1

]
.

Consider the four-dimensional representation V ⊗ V, and show by an explicit choice of basis for
V ⊗ V that it is isomorphic to a direct sum of the four one-dimensional representations.

We also mention the basic result which says that there is not much freedom in constructing G-
module maps between irreducible representations. For the second statement below we need the
ground field to be algebraically closed: in practise we use it only for complex representations.

Lemma 2.25 (Schur’s Lemma)
If V and W are irreducible representations of a group G, and T : V →W is a G-module map, then

(i) either T = 0 or T is an isomorphism

(ii) if V = W, then T = λ idV for some λ ∈ C.

Proof. If Ker (T) , {0}, then by irreducibility of V we have Ker (T) = V and therefore T = 0. If
Ker (T) = {0}, then T is injective and by irreducibility of W we have Im (T) = W, so T is also
surjective. This proves (i). To prove (ii), pick any eigenvalue λ of T (here we need the ground field
to be algebraically closed). Now consider the G-module map T − λidV, which has a nontrivial
kernel. The kernel must be the whole space by irreducibility, so T − λ idV = 0. �

Exercise 8 (Irreducible representations of abelian groups)

(a) Let G be an abelian (=commutative) group. Show that any irreducible representation of G
is one dimensional. Conclude that (isomorphism classes of) irreducible representations can
be identified with group homomorphisms G→ C∗.

(b) Let Cn � Z/nZ be the cyclic group of order n, i.e. the group with one generator c and relation
cn = e. Find all irreducible representations of Cn.

2.4 Characters

In the rest of this section G is a finite group of order |G| and all representations are assumed to be
finite dimensional.

We have already seen the fundamental result of complete reducibility: any representation of G is a
direct sum of irreducible representations. It might nevertheless not be clear yet how to concretely
work with the representations. We now introduce a very powerful tool for the representation
theory of finite groups: the character theory.

Definition 2.26. For ρ : G → GL(V) a representation, the character of the representation is the
function χV : G→ C given by

χV(g) = Tr(ρ(g)).

Observe that we have
χV(e) = dim (V)

and for two group elements that are conjugates, g2 = hg1h−1, we have

χV(g2) = Tr(ρ(g2)) = Tr
(
ρ(h)ρ(g1)ρ(h)−1

)
= Tr(ρ(g1)) = χV(g1).
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Thus the value of a character is constant on each conjugacy class of G (such functions G→ C are
called class functions).

Example 2.27. We have seen three (irreducible) representations of the group S3: the trivial
representation U and the alternating representation U′, both one dimensional, and the two-
dimensional representation V in Exercise 5. The conjugacy classes of symmetric groups correspond
to the cycle decompositions of a permutation — in particular for S3 the conjugacy classes are

identity : {e}
transpositions : {(12), (13), (23)}

3-cycles : {(123), (132)} .

We can explicitly compute the trace of for example the transposition (12) and the three cycle (123)
to get the characters of these representations

χ(e) χ((12)) χ((123))
U 1 1 1
U′ 1 −1 1
V 2 0 −1

.

Recall that we have seen how to make the dual V∗ a representation (Exercise 4), how to make
direct sum V1 ⊕ V2 a representation (Definition 2.20) and also how to make the tensor product a
representation (Definition 2.21). Let us now see how these operations affect characters.

Proposition 2.28
Let V,V1,V2 be representations of G. Then we have

(i) χV∗ (g) = χV(g)

(ii) χV1⊕V2 (g) = χV1 (g) + χV2 (g)

(iii) χV1⊗V2 (g) = χV1 (g)χV2 (g) .

Proof. Part (i) was done in Exercise 4. For the other two, recall first that if ρ : G → GL(V) is
a representation, then ρ(g) is diagonalizable by Lemma 2.13. Therefore there are n = dim (V)
linearly independent eigenvectors with eigenvalues λ1, λ2, . . . , λn, and the trace is the sum of
these χV(g) =

∑n
j=1 λ j. Consider the representations ρ1 : G → GL(V1), ρ2 : G → GL(V2). For

g ∈ G, take bases of eigenvectors of ρ1(g) and ρ2(g) for V1 and V2, respectively: if n1 = dim (V1)
and n2 = dim (V2) let v(1)

α , α = 1, 2, . . . ,n1, be eigenvectors of ρ1(g) with eigenvalues λ(1)
α , and v(2)

β ,

β = 1, 2, . . . ,n2, eigenvectors of ρ2(g) with eigenvalues λ(2)
β . To prove (ii) it suffices to note that

v(1)
α ∈ V1 ⊂ V1 ⊕ V2 and v(2)

α ∈ V2 ⊂ V1 ⊕ V2 are the n1 + n2 = dim (V1 ⊕ V2) linearly independent
eigenvectors for the direct sum representation, and the eigenvalues are λ(1)

α and λ(2)
β . To prove (iii)

note that the vectors v(1)
α ⊗ v(2)

β are the n1n2 = dim (V1 ⊗ V2) linearly independent eigenvectors of

V1 ⊗ V2, and the eigenvalues are the products λ(1)
α λ

(2)
β , since

g.(v(1)
α ⊗ v(2)

β ) =
(
ρ1(g).v(1)

α

)
⊗

(
ρ2(g).v(2)

β

)
= (λ(1)

α v(1)
α ) ⊗ (λ(2)

β v(2)
β ) = λ(1)

α λ
(2)
β (v(1)

α ⊗ v(2)
β ).

Therefore the character of the tensor product reads

χV1⊗V2 (g) =
∑
α,β

λ(1)
α λ(2)

β =
( n1∑
α=1

λ(1)
α

) ( n2∑
β=1

λ(2)
β

)
= χV1 (g) χV2 (g).

�
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Exercise 9 (The relation between the representations Hom(V,W) and W ⊗ V∗)
Let V,W be finite dimensional vector spaces, and recall from Exercise 3 that we have an isomor-
phism of vector spaces W ⊗V∗ → Hom(V,W), which is obtained by sending w⊗ϕ ∈W ⊗V∗ to the
linear map v 7→ 〈ϕ, v〉w.

Suppose now that V and W are representations of a group G. The space W ⊗V∗ gets a structure of
a representation of G when we use the definition of a dual representation (Exercise 4) and the def-
inition of a tensor product representation (Definition 2.21). We have also defined a representation
on Hom(V,W) in Example 2.14. Check that the above isomorphism of vector spaces

W ⊗ V∗ � Hom(V,W)

is an isomorphism of representations of G.

How to pick the trivial part of a representation?

For V a representation of G, set

VG =
{
v ∈ V

∣∣∣ g.v = v ∀g ∈ G
}
.

Then VG
⊂ V is a subrepresentation, which is a trivial representation in the sense of Example 2.10.

We define a linear map ϕ on V by

ϕ(v) =
1
|G|

∑
g∈G

g.v v ∈ V.

Proposition 2.29
The map ϕ is a projection V → VG.

Proof. Clearly if v ∈ VG then ϕ(v) = v, so we have ϕ|VG = idVG . For any h ∈ G and v ∈ V, use the
change of variables g̃ = hg to compute

h.ϕ(v) =
1
|G|

∑
g∈G

hg.v =
1
|G|

∑
g̃∈G

g̃.v = ϕ(v),

so we have Im
(
ϕ
)
⊂ VG. �

Thus we have an explicitly defined projection to the trivial part of any representation, and we
have in particular

dim
(
VG

)
= Tr(ϕ) =

1
|G|

∑
g∈G

χV(g).

Now suppose that V and W are two representations of G and consider the representation
Hom(V,W). We have seen in Exercise 9 that Hom(V,W) � W ⊗ V∗ as a representation. In
particular, we know how to compute the character

χHom(V,W)(g) = χW⊗V∗ (g) = χW(g)χV∗ (g) = χV(g)χW(g).

We’ve also seen that the trivial part of this representation consists of the G-module maps between
V and W,

Hom(V,W)G = HomG(V,W),

and we get the following almost innocent looking consequence

dim (HomG(V,W)) = Tr(ϕ) =
1
|G|

∑
g∈G

χV(g)χW(g).
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Suppose now that V and W are irreducible. Then Schur’s lemma says that when V and W are not
isomorphic, there are no nonzero G-module maps V → W, whereas the G-module maps from an
irreducible representation to itself are scalar multiples of the identity, i.e.

dim (HomG(V,W)) =

{
1 if V � W
0 otherwise .

We have in fact obtained a very powerful result.

Theorem 2.30
The following statements hold for irreducible representations of a finite group G.

(i) If V and W are irreducible representations, then

1
|G|

∑
g∈G

χV(g)χW(g) =

{
1 if V � W
0 otherwise .

(ii) Characters of (non-isomorphic) irreducible representations are linearly independent.

(iii) The number of (isomorphism classes of) irreducible representations is at most the number
of conjugacy classes of G.

Remark 2.31. In fact there is an equality in (iii), the number of irreducible representations of a
finite group is precisely the number of its conjugacy classes. This will be proven in Exercise 13.

Proof of Theorem 2.30. The statement (i) was proved above. We can interpret it as saying that the
characters of irreducible representations are orthonormal with respect to the natural inner product
(ψ,φ) = 1

|G|
∑

g∈G ψ(g)φ(g) on the space CG of C-valued functions on G. The linear independence,
(ii), follows at once. Since a character has constant value on each conjugacy class, an obvious
upper bound on the number of linearly independent characters gives (iii). �

We proceed with further consequences.

Corollary 2.32
Let Wα, α = 1, 2, . . . , k, be the distinct irreducible representations of G. Let V be any representation,
and let mα be the multiplicity of Wα when we use complete reducibility:

V =
⊕
α

mα Wα

Then we have

(i) The character χV determines V (up to isomorphism).

(ii) The multiplicities are given by

mα =
1
|G|

∑
g∈G

χWα (g)χV(g).

(iii) We have
1
|G|

∑
g∈G

|χV(g)|2 =
∑
α

m2
α.

(iv) The representation V is irreducible if and only if

1
|G|

∑
g∈G

|χV(g)|2 = 1.
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Proof. The character of V is by Proposition 2.28 given by χV(g) =
∑
α mα χWα (g). Now (ii) is

obtained by taking the orthogonal projection to χWα . In particular we obtain the (anticipated)
fact that in complete reducibility the direct sum decomposition is unique up to permutation of
the irreducible summands. We also see (i) immediately, and (iii) follows from the same formula
combined with χV(g)χV(g) = |χV(g)|2. Then (iv) is obvious in view of (iii). �

We get some more nice consequences when we consider the representation given in the following
examples.

Example 2.33. Consider the vector space CG with basis {eg | g ∈ G}. For any g, h ∈ G, set

h.eg = ehg

and extend linearly. This defines a |G|-dimensional representation called the regular representation
of G. We denote the regular representation here by C[G] because later we will put an algebra
structure on this vector space to obtain the group algebra of G, and then this notation is standard.

Example 2.34. More generally, following the same idea, if the group G acts on a set X, then we
can define a representation on the vector space CX with basis {ex|x ∈ X} by a linear extension of
g.ex = e(g.x). These kind of represetations are called permutation representations.

It is obvious, when we write matrices in the basis (ex)x∈X and compute traces, that χCX (g) is the
number of elements x ∈ X which are fixed by the action of g. In particular the character of the
regular representation is

χC[G](g) =

{
|G| if g = e
0 if g , e .

We can then use Corollary 2.32 (ii) and compute, for any irreducible Wα,

mα =
1
|G|

∑
g∈G

χWα (g)χC[G](g) =
1
|G|

χWα (e) |G| = dim (Wα) .

Thus any irreducible representation appears in the regular representation by multiplicity given
by its dimension

C[G] =
⊕
α

mα Wα where mα = dim (Wα) .

Considering in particular the dimensions of the two sides, and recalling dim (C[G]) = |G|, we get
the following formula ∑

α

dim (Wα)2 = |G|.

Example 2.35. The above formula can give useful and nontrivial information. Consider for
example the group S4, whose order is |S4| = 4! = 24. We have seen the trivial and alternating
representations of S4, and since there are five conjugacy classes (identity, transposition, two disjoint
transpositions, three-cycle, four-cycle), we know that there are at most three other irreducible
representations S4. From the above formula we see that the sum of squares of their dimensions
is |S4| − 12

− 12 = 22. Since 22 is not a square, there must remain more than one irreducible, and
since 22 is also not a sum of two squares, there must in fact be three other irreducibles. The only
way to write 22 as a sum of three squares is 22 = 22 + 32 + 32, so we see that the three remaining
irreducible representations have dimensions 2, 3, 3.

Exercise 10 (Characters of the group of symmetries of the square)
Let D4 be the group with two generators, r and m, and relations r4 = e, m2 = e, rmrm = e. Recall
that we have considered the representations of D4 in Exercise 6.
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(a) Find a complete list of irreducible representations of D4, and compute the characters of all
the irreducible representations.

(b) Let V be the two-dimensional irreducible representation of D4 introduced in Exercise 6.
Verify using character theory that the representation V ⊗ V is isomorphic to the direct sum
of four one dimensional representations (see also Exercise 7).

Exercise 11 (The standard representation of S4)
Consider the symmetric group S4 on four elements, and define a four-dimensional representation
V with basis e1, e2, e3, e4 by

σ.e j = eσ( j) for σ ∈ S4, j = 1, 2, 3, 4.

(a) Compute the character of V.

(b) Show that the subspace spanned by e1 + e2 + e3 + e4 is a trivial subrepresentation of V and
show that the complementary subrepresentation to it is an irreducible three-dimensional
representation of S4.

(c) Find the entire character table of S4, that is, characters of all irreducible representations.
(Hint: You should already know a couple of irredubibles. Try taking tensor products of
these, and using orthonormality of irreducible characters.)

Exercise 12 (Example of tensor products of representations of S3)
Recall that there are three irreducible representations of S3, the trivial representation U, the
alternating representation U′ and the two-dimensional irreducible representation V found in
Exercise 5. Consider the representation V⊗n, the n-fold tensor product of V with itself. Find the
multiplicities of U, U′ and V when V⊗n is written as a direct sum of irreducible representations.
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Chapter 3

Algebras, coalgebras, bialgebras and
Hopf algebras

Here we first define the algebraic structures to be studied in the rest of the course.

3.1 Algebras

By the standard definition, an algebra (which for us will mean an associative unital algebra) is
a triple (A, ∗, 1A), where A is a vector space (over a field K, usually K = C the field of complex
numbers) and ∗ is a binary operation on A

∗ : A × A→ A (a, b) 7→ a ∗ b

called the product or multiplication, and 1A is an element of A, the unit, such that the following
hold:

“Bilinearity”: the map ∗ : A × A→ A is bilinear

“Associativity”: a1 ∗ (a2 ∗ a3) = (a1 ∗ a2) ∗ a3 for all a1, a2, a3 ∈ A

“Unitality”: for all a ∈ A we have a ∗ 1A = a = 1A ∗ a

We usually omit the notation for the binary operation ∗ and write simply ab := a ∗ b. The algebra
is said to be commutative if ab = ba for all a, b ∈ A.

We usually abbreviate and write only A for the algebra (A, ∗, 1A). An algebra (A, ∗, 1A) is said to be
finite dimensional if the K-vector space A is finite dimensional. Note that even for commutative
algebras we reserve the additive symbol + for the vector space addition in A, so the product in an
algebra is never denoted additively (unlike for groups).

For an element a ∈ A, a left inverse of a is an element a′ such that a′ ∗ a = 1A and a right inverse of
a is an element a′′ such that a ∗ a′′ = 1A. An element is said to be invertible if it has both left and
right inverses. In such a case the two have to be equal since

a′′ = 1A ∗ a′′ = (a′ ∗ a) ∗ a′′ = a′ ∗ (a ∗ a′′) = a′ ∗ 1A = a′,

and we denote by a−1 the (left and right) inverse of a. This trivial observation about equality of
left and right inverses will come in handy a bit later.

Similarly, the unit 1A is uniquely determined by the unitality property.

Example 3.1. Any fieldK is an algebra over itself (and moreover commutative).
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Example 3.2. The algebra of polynomials (with coefficients in K) in one indeterminate x is
denoted by

K[x] :=
{
c0 + c1x + c2x2 + · · · + cnxn

∣∣∣ n ∈N, c0, c1, . . . , cn ∈ K
}
.

The product is the usual product of polynomials (commutative).

Example 3.3. Let V be a vector space and End(V) = Hom(V,V) = {T : V → V linear} the set of
endomorphisms of V. Then End(V) is an algebra, with composition of functions as the binary
operation, and the identity map idV as the unit. When V is finite dimensional, dim (V) = n, and a
basis of V has been chosen, then End(V) can be identified with the algebra of n × n matrices, with
matrix product as the binary operation.

Example 3.4. For G a group, letK[G] be the vector space with basis (eg)g∈G over the ground field
K (usually we take K = C, the field of complex numbers) and define the product by bilinearly
extending

eg ∗ eh = egh.

Then, K[G] is an algebra called the group algebra of G, the unit is ee, where e ∈ G is the neutral
element of the group.

Definition 3.5. Let (A1, ∗1, 1A1 ) and (A2, ∗2, 1A2 ) be algebras. A mapping f : A1 → A2 is said to be
a homomorphism of (unital) algebras if f is linear and f (1A1 ) = 1A2 and for all a, b ∈ A1

f (a ∗1 b) = f (a) ∗2 f (b).

Definition 3.6. For A an algebra, a vector subspace A′ ⊂ A is called a subalgebra if 1A ∈ A′ and
for all a′, b′ ∈ A′ we have a′b′ ∈ A′. A vector subspace J ⊂ A is called a left ideal (resp. right ideal,
resp. two-sided ideal or simply ideal) if for all a ∈ A and k ∈ J we have ak ∈ J (resp. ka ∈ J, resp.
both).

For J an ideal, the quotient vector space A/J becomes an algebra by setting

(a + J)(b + J) = ab + J,

which is well defined since the three last terms in (a + k)(b + k′) = ab + ak′ + kb + kk′, and are in the
ideal if k and k′ are. The unit of A/J is the equivalence class of the unit of A, that is 1A + J.

The isomorphism theorem for algebras now states the following.

Theorem 3.7
Let A1 and A2 be algebras and f : A1 → A2 a homomorphism. Then

1◦) Im
(

f
)

:= f (A1) ⊂ A2 is a subalgebra.

2◦) Ker
(

f
)

:= f−1({0}) ⊂ A1 is an ideal.

3◦) The quotient algebra A1/Ker
(

f
)

is isomorphic to Im
(

f
)
.

More precisely, there exists an injective algebra homomorphism f̄ : A1/Ker
(

f
)
→ A2 such that the

following diagram commutes

A1
f

- A2

A1/Ker
(

f
) f̄

-

π
-

,

where π : A1 → A1/Ker ( f ) is the canonical projection to the quotient, π(a) = a + Ker ( f ).
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Proof. The assertions (1◦) and (2◦) are easy. For (3◦), take f̄ to be the injective linear map that one
gets from the isomorphism theorem of vector spaces applied to the present case. Notice that this
f̄ is an algebra homomorphism since

f̄
(
(a + Ker f )(b + Ker f )

)
= f̄ (ab + Ker f ) = f (ab) = f (a) f (b) = f̄ (a + Ker f ) f̄ (b + Ker f )

and
f̄
(
1A1 + Ker

(
f
))

= f (1A1 ) = 1A2 .

�

We also recall the following definition.

Definition 3.8. The center of an algebra A is the set Z ⊂ A of elements that commute with the
whole algebra, i.e.

Z =
{
z ∈ A

∣∣∣ za = az ∀a ∈ A
}
.

3.2 Representations of algebras

The definition of a representation is analogous to the one for groups:

Definition 3.9. For A an algebra and V a vector space, a representation of A in V is an algebra
homomorphism ρ : A→ End(V).

In such a case we often call V an A-module (more precisely, a left A-module) and write a.v = ρ(a)v
for a ∈ A, v ∈ V.

Definition 3.10. Let A be an algebra and ρV : A → End(V), ρW : A → End(W) two represen-
tations of A. A linear map T : V → W is called and A-module map (or sometimes A-linear or
A-homomorphism) if for all a ∈ A we have

ρW(a) ◦ T = T ◦ ρV(a).

In the module notation the condition for a map to be an A-module map reads

a.T(v) = T(a.v) for all a ∈ A, v ∈ V.

Given an algebra A = (A, ∗, 1A), the opposite algebra Aop is the algebra Aop = (A, ∗op, 1A) with the
product operation reversed

a ∗op b = b ∗ a for all a, b ∈ A.

Representations of the opposite algebra correspond to right A-modules, that is, vector spaces V
with a right multiplication by elements of A which satisfy v.1A = v and (v.a).b = v.(ab) for all v ∈ V,
a, b ∈ A.

Subrepresentations (submodules), irreducible representations (simple modules), quotient repre-
sentations (quotient modules) and direct sums of representations (direct sums of modules) are
defined in the same way as before. For representations of algebras in complex vector spaces,
Schur’s lemma continues to hold and the proof is the same as before.

The most obvious example of a representation of an algebra is the algebra itself:

Example 3.11. The algebra A is a left A-module by a.b = ab (for all a in the algebra A and b in
the module A), and a right A-module by the same formula (then we should read that a is in the
module A and b in the algebra A).
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Also the dual of an algebra is easily equipped with a representation structure.

Example 3.12. The dual A∗ becomes a left A-module if we define a. f ∈ A∗ by

〈a. f , x〉 = 〈 f , xa〉

for f ∈ A∗, a, x ∈ A. Indeed, the property 1A. f = f is evident and we check

〈a.(b. f ), x〉 = 〈b. f , xa〉 = 〈 f , (xa)b〉 = 〈 f , x(ab)〉 = 〈(ab). f , x〉.

Similarly, the dual becomes a right A-module by the definition

〈 f .a, x〉 = 〈 f , ax〉

Example 3.13. Representations of a group G correspond in a rather obvious way to representa-
tions of the group algebraC[G]. Indeed, given a representation of the group, ρG : G→ GL(V), there
is a unique linear extension of it from the values on the basis vectors, eg 7→ ρG(g) ∈ GL(V) ⊂ End(V),
which defines a representation of the group algebra. The other way around, given an algebra rep-
resentation ρA : C[G] → End(V), we observe that ρA(eg) is an invertible linear map with inverse
ρA(eg−1 ), so we set g 7→ ρA(eg) to define a representation of the group. Both ways the homomor-
phism property of the constructed map obviously follows from the homomorphism property of
the original map.

Exercise 13 (The center of the group algebra)
Let G be a finite group and A = C[G] its group algebra, i.e. the complex vector space with basis
(eg)g∈G equipped with the product eg eh = egh (extended bilinearly).

(a) Show that the element
a =

∑
g∈G

α(g) eg ∈ A

is in the center of the group algebra if and only if α(g) = α(hgh−1) for all g, h ∈ G.

(b) Suppose that α : G → C is a function which is constant on each conjugacy class, and
suppose furthermore that α is orthogonal (with respect to the inner product (ψ,φ) =

|G|−1 ∑
g∈G ψ(g)φ(g)) to the characters of all irreducible representations of G. Show that

for any representation ρ : G → GL(V) the map
∑

g α(g)ρ(g) : V → V is the zero map.
Conclude that α has to be zero.

(c) Using (b) and the earlier results about irreducible representations of finite groups, show that
the number of irreducible representations of the group G is equal to the number of conjugacy
classes of G

Recall that in Theorem 2.30 we had showed that the number of irreducible representations of a
finite group is at most the number of conjugacy classes of the group — this exercise shows that
the numbers are in fact equal.

Example 3.14. Let V be a vector space overK and T ∈ End(V) a linear map of V into itself. Since
the polynomial algebraK[x] is the free (commutative) algebra with one generator x, there exists a
unique algebra morphism ρT : K[x]→ End(V) such that x 7→ T, namely

ρT

(
c0 + c1x + c2x2 + · · · + cnxn

)
= c0 + c1T + c2T2 + · · · + cnTn.

Thus any endomorphism T of a vector space defines a representation ρT of the algebra K[x].
Likewise, any n × n matrix with entries in K, interpreted as an endomorphism of Kn, defines a
representation of the polynomial algebra.
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Example 3.15. Let V be a complex vector space, and T ∈ End(V) as above and let q(x) ∈ C[x] be
a polynomial. Consider the algebra C[x]/〈q(x)〉, where 〈q(x)〉 is the ideal generated by q(x). The
above representation map ρT : C[x]→ End(V) factors through the quotient algebra C[x]/〈q(x)〉

C[x]
ρT - End(V)

C[x]/〈q(x)〉

-

-

,

if and only if the ideal 〈q(x)〉 is contained in the ideal Ker ρT. The ideal Ker ρT is generated by
the minimal polynomial of T (recall that the polynomial algebra is a principal ideal domain: any
ideal is generated by one element, a lowest degree nonzero polynomial contained in the ideal).
Thus the above factorization through quotient is possible if and only if the minimal polynomial
of T divides q(x). We conclude that the representations of the algebra C[x]/〈q(x)〉 correspond to
endomorphisms whose minimal polynomial divides q(x) — or equivalently, to endomorphisms T
such that q(T) = 0.

The Jordan decomposition of complex matrices gives a direct sum decomposition of this repre-
sentation with summands corresponding to the invariant subspaces of each Jordan block. The
direct summands are indecomposable (not themself expressible as direct sum of two proper sub-
reprentations) but those corresponding to blocks of size more than one are not irreducible (they
contain proper subrepresentations, for example the one dimensional eigenspace within the block).
We see that whenever q(x) has roots of multiplicity greater than one, there are representations of
the algebra C[x]/〈q(x)〉which are not completely reducible.

On semisimplicity

Definition 3.16. Let A be an algebra. An A-module W is called simple (or irreducible) if the only
submodules of W are {0} and W . An A-module V is called completely reducible if V is isomorphic
to a direct sum of finitely many simple A-modules. An algebra A is called semisimple if all finite
dimensional A-modules are completely reducible.

The terms “simple module” and “irreducible representation” seem standard, but we will also
speak of irreducible modules with the same meaning.

Definition 3.17. An A-module V is called indecomposable if it can not be written as a direct
sum of two nonzero submodules.

In particular any irreducible module is indecomposable. And for semisimple algebras the two
concepts are the same.

The following classical result gives equivalent conditions for semisimplicity, which are often
practical.

Proposition 3.18
Let A be an algebra. The following conditions are equivalent.

(i) A is semisimple, i.e. any finite dimensional A-module is isomorphic to a finite direct sum of
irreducible A-modules.

(ii) For any finite dimensional A-module V and any submodule W ⊂ V there exists a submodule
W′
⊂ V (complementary submodule) such that V = W ⊕W′ as an A-module.
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(iii) For any finite dimensional A-module V and any irreducible submodule W ⊂ V there exists
a submodule W′

⊂ V such that V = W ⊕W′ as an A-module.

(iv) For any finite dimensional A-module V and any submodule W ⊂ V there exists an A-module
map π : V →W such that π|W = idW (an A-linear projection to the submodule).

(v) For any finite dimensional A-module V and any irreducible submodule W ⊂ V there exists
an A-module map π : V →W such that π|W = idW .

Proof. We will do the proofs of the following implications:

(ii) � - (iv)

(i)

-

(iii)
?
� -

�

(v)
?

Clearly (ii)⇒ (iii) and (iv)⇒ (v).

Let us show that (ii) and (iv) are equivalent, in the same way one shows that (iii) and (v) are
equivalent. Assume (ii), that any submodule W ⊂ V has a complementary submodule W′, that is
V = W ⊕W′. Then if π is the projection to W with respect to this direct sum decomposition, we
have that for all w ∈W, w′ ∈W′, a ∈ A

π (a · (w + w′)) = π(a · w + a · w′) = a · w = a · π(w + w′),

which shows that the projection is A-linear. Conversely, assume (iv) that for any submodule
W ⊂ V there is an A-linear projection π : V → W. The subspace W′ = Ker (π) is a submodule
complementary to W = Ker (1 − π).

We must still show that (iii)⇒ (i) and (i)⇒ (ii).

Assume (iii) and let V be a finite dimensional A-module (we may assume immediately that
V , {0}). Consider a non-zero submodule W1 ⊂ V of smallest dimension, it is necessarily
irreducible. If W1 = V we’re done, if not by property (iii) we have a complementary submodule
V1 ⊂ V with dim V1 < dim V and V = W1 ⊕ V1. Continue recursively to find the non-zero
irreducible submodules Wn ⊂ Vn−1 and their complementaries Vn in Vn−1, that is Vn−1 = Wn ⊕Vn.
The dimensions of the latter are strictly decreasing,

dim V > dim V1 > dim V2 > · · · ,

so for some n0 ∈Nwe have Wn = Vn−1 and

V = W1 ⊕W2 ⊕ · · · ⊕Wn0 ,

proving (i).

Let us finally prove that (i) implies (ii). Suppose V =
⊕

i∈I Wi, where I is a finite index set and for
all i ∈ I the submodule Wi is irreducible. Suppose W ⊂ V is a submodule, and choose a subset
J ⊂ I such that

W ∩

⊕
j∈J

W j

 = {0} , (3.1)
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but that for all i ∈ I \ J

W ∩

Wi ⊕
⊕

j∈J

W j

 , {0} . (3.2)

Denote by W′ =
⊕

j∈J W j the submodule thus obtained. By Equation (3.1) the sum of W and W′

is direct, and we will prove that it is the entire module V. For that, note that by Equation (3.2) for
all i ∈ I \ J there exists w ∈W \ {0} such that w = wi + w′ with wi ∈Wi \ {0}, w′ ∈W′. Therefore the
submodule W⊕W′ contains the nonzero vector wi ∈Wi, and by irreducibility we get Wi ⊂W⊕W′.
We get this inclusion for all i ∈ I \ J, and also evidently W j ⊂W ⊕W′ for all j ∈ J, so we conclude

V =
⊕

i∈I

Wi ⊂ W ⊕W′,

which finishes the proof. �

3.3 Another definition of algebra

In our definitions of algebras, coalgebras and Hopf algebras we will from here on take the ground
field to be the field C of complex numbers, although much of the theory could be developed for
other fields, too.

The following “tensor flip” will be used occasionally. For V and W vector spaces, let us denote by
SV,W the linear map that switches the components

SV,W : V ⊗W →W ⊗ V such that SV,W(v ⊗ w) = w ⊗ v ∀ v ∈ V,w ∈W. (3.3)

By the bilinearity axiom for algebras, the product could be factorized through A⊗A, namely there
exists a linear map µ : A ⊗ A→ A such that

µ(a ⊗ b) = a b ∀ a, b ∈ A.

We can also encode the unit in a linear map

η : C→ A λ 7→ λ 1A.

The axioms of associativity and unitality then read

µ ◦ (µ ⊗ idA) = µ ◦ (idA ⊗ µ) (H1)
µ ◦ (η ⊗ idA) = idA = µ ◦ (idA ⊗ η), (H2)

where (H1) expresses the equality of two maps A ⊗ A ⊗ A → A, when we make the usual
identifications

(A ⊗ A) ⊗ A � A ⊗ A ⊗ A � A ⊗ (A ⊗ A)

and (H2) expresses the equality of three maps A→ A, when we make the usual identifications

C ⊗ A � A � A ⊗ C.

We take this as our definition (it is equivalent to the standard definition).

Definition 3.19. An (associative unital) algebra is a triple (A, µ, η), where A is a vector space and

µ : A ⊗ A→ A η : C→ A

are linear maps, such that “associativity” (H1) and “unitality” (H2) hold.
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Example 3.20. If (A, µ, η) is an algebra, then setting µop = µ◦SA,A, i.e. µop(a⊗b) = b a, one obtains
the opposite algebra Aop = (A, µop, η). An algebra is called commutative if µop = µ.

The axiom of associativity can also be summarized by the following commutative diagram

A ⊗ A

A ⊗ A ⊗ A

µ
⊗

idA
-

A

µ

-

A ⊗ A

µ

-
id

A
⊗
µ -

(H1)

and unitality by

C ⊗ A � A � A ⊗ C

A ⊗ A

µ

6

�
idA
⊗
ηη

⊗
id

A -

. (H2)

3.4 Coalgebras

A coalgebra is defined by reversing the directions of all arrows in the commutative diagrams
defining algebras. Namely, we impose an axiom of “coassociativity”

C ⊗ C

C ⊗ C ⊗ C
�

∆
⊗

id C

C

�

∆

C ⊗ C
�

∆

�

id
C
⊗

∆

(H1’)

and “counitality”

C ⊗ C � C � C ⊗ C

C ⊗ C

∆

? id C
⊗
ε

-
�

ε
⊗

id
C

. (H2’)

Definition 3.21. A coalgebra is a triple (C,∆, ε), where C is a vector space and

∆ : C→ C ⊗ C ε : C→ C

are linear maps such that “coassociativity” (H1’) and “counitality” (H2’) hold. The maps ∆ and ε
are called coproduct and counit, respectively.
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The axioms for coalgebras can also be written as

(∆ ⊗ idC) ◦ ∆ = (idC ⊗ ∆) ◦ ∆ (H1’)
(ε ⊗ idC) ◦ ∆ = idC = (idC ⊗ ε) ◦ ∆. (H2’)

Example 3.22. If (C,∆, ε) is a coalgebra, then with the opposite coproduct ∆cop = SC,C ◦ ∆ one
obtains the (co-)opposite coalgebra Ccop = (C,∆cop, ε). A coalgebra is called cocommutative if
∆cop = ∆.

Exercise 14 (A coalgebra from trigonometric addition formulas)
Let C be a vector space with basis {c, s}. Define ∆ : C→ C ⊗ C by linear extension of

c 7→ c ⊗ c − s ⊗ s , s 7→ c ⊗ s + s ⊗ c.

Does there exist ε : C→ C such that (C,∆, ε) becomes a coalgebra?

Sweedler’s sigma notation

For practical computations with coalgebras it’s important to have manageable notational conven-
tions. We will follow what is known as the Sweedler’s sigma notation. By usual properties of the
tensor product, we can for any a ∈ C write the coproduct of a as a linear combination of simple
tensors

∆(a) =

n∑
j=1

a′j ⊗ a′′j .

In such expressions the choice of simple tensors, or the choice of a′j, a
′′

j ∈ C, or even the number n
of terms, are of course not unique! It is nevertheless convenient to keep this property in mind and
use the notation

∆(a) =
∑
(a)

a(1) ⊗ a(2)

to represent any of the possible expressions for ∆(a) ∈ C ⊗ C. Likewise, when a ∈ C, and we write
some expression involving a sum

∑
(a) and bilinear dependency on the pair (a(1), a(2)), it is to be

interpreted so that any linear combination of simple tensors that gives the coproduct of a could
be used. For example, if g : C→ V and h : C→W are linear maps, then∑

(a)

g(a(1)) ⊗ h(a(2)) represents (g ⊗ h)(∆(a)) ∈ V ⊗W.

The opposite coproduct of Example 3.22 is written in this notation as

∆cop(a) = SC,C(∆(a)) =
∑
(a)

a(2) ⊗ a(1).

Another example is the counitality axiom, which reads∑
(a)

ε(a(1)) a(2) = a =
∑
(a)

ε(a(2)) a(1). (H2’)

The coassociativity axiom states that∑
(a)

∑
(a(1))

(a(1))(1) ⊗ (a(1))(2) ⊗ a(2) =
∑
(a)

∑
(a(2))

a(1) ⊗ (a(2))(1) ⊗ (a(2))(2). (H1’)

By a slight abuse of notation we write the above quantity as
∑

(a) a(1)⊗a(2)⊗a(3), and more generally
we write the n − 1-fold coproduct as

(∆ ⊗ idC ⊗ · · · ⊗ idC) ◦ . . . ◦ (∆ ⊗ idC) ◦ ∆(a) =
∑
(a)

a(1) ⊗ a(2) ⊗ · · · ⊗ a(n) = ∆(n)(a).
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So when reading an expression involving the Sweedler’s notation
∑

(a), one should always check
what is the largest subscript index of the a( j) in order to know how many coproducts are succes-
sively applied to a. By coassociativity, however, it doesn’t matter to which components we apply
the coproducts.

Subcoalgebras, coideals, quotient coalgebras and isomorphism theorem

As for other algebraic structures, maps that preserve the structure are called homomorphisms,
and one can define substructures and quotient structures, and one has an isomorphism theorem.

Definition 3.23. Let (C j,∆ j, ε j), j = 1, 2, be two coalgebras. A homomorphism of coalgebras is
linear map f : C1 → C2 which preserves the coproduct and counit in the following sense

∆2 ◦ f = ( f ⊗ f ) ◦ ∆1 and ε2 ◦ f = ε1.

Definition 3.24. For C = (C,∆, ε) a coalgebra, a vector subspace C′ ⊂ C is called a subcoalgebra
if

∆(C′) ⊂ C′ ⊗ C′.

A vector subspace J ⊂ C is called a coideal if

∆(J) ⊂ J ⊗ C + C ⊗ J and ε
∣∣∣
J = 0.

For J ⊂ C a coideal, the quotient vector space C/J becomes a coalgebra by the coproduct and counit

∆C/J(a + J) =
∑
(a)

(a(1) + J) ⊗ (a(2) + J) and εC/J(a + J) = ε(a),

whose well-definedness is again due to the coideal properties of J.

The isomorphism theorem for coalgebras is the following (unsurprising) statement.

Theorem 3.25
Let C1 = (C1,∆1, ε1) and C2 = (C2,∆2, ε2) be coalgebras and f : C1 → C2 a homomorphism of
coalgebras. Then

1◦) Im
(

f
)

:= f (C1) ⊂ C2 is a subcoalgebra.

2◦) Ker
(

f
)

:= f−1({0}) ⊂ C1 is a coideal.

3◦) The quotient coalgebra C1/Ker
(

f
)

is isomorphic to Im
(

f
)
.

More precisely, there exists an injective homomorphism of coalgebras f̄ : C1/Ker
(

f
)
→ C2 such

that the following diagram commutes

C1
f

- C2

C1/Ker
(

f
) f̄

-

π
-

,

where π : C1 → C1/Ker
(

f
)

is the canonical projection to the quotient, π(a) = a + Ker
(

f
)
.
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Proof. To prove (1◦), suppose b ∈ Im
(

f
)
, that is b = f (a) for some a ∈ C1, and use the homomor-

phism property of f to get

∆2(b) = ∆2( f (a)) = ( f ⊗ f )(∆1(a)) =
∑
(a)

f (a(1)) ⊗ f (a(2)) ⊂ Im
(

f
)
⊗ Im

(
f
)
.

To prove (2◦), suppose a ∈ Ker
(

f
)
, that is f (a) = 0. Then

ε1(a) = ε2( f (a)) = ε2(0) = 0

so the condition ε1

∣∣∣
Ker( f) = 0 is satisfied. Also we have

0 = ∆2(0) = ∆2( f (a)) = ( f ⊗ f )(∆1(a)) =
∑
(a)

f (a(1)) ⊗ f (a(2)),

from which it is easy to see, for example by taking a basis for Ker
(

f
)

and completing it to a basis
of C1, that ∆1(a) =

∑
(a) a(1) ⊗ a(2) ⊂ Ker

(
f
)
⊗ C1 + C1 ⊗ Ker

(
f
)
. For the proof of (3◦), one takes the

injective linear map f̄ provided by the isomorphism theorem of vector spaces, and checks that
this f̄ is a homomorphism of coalgebras. Indeed, using the fact that f is a homomorphism of
coalgebras we get

ε2

(
f̄ (c + Ker f )

)
= ε2( f (c)) = ε1(c)

and

∆2

(
f̄ (c + Ker f )

)
= ∆2( f (c)) = ( f ⊗ f )(∆1(c)) =

∑
(c)

f (c(1)) ⊗ f (c(2))

=
∑
(c)

f̄ (c(1) + Ker f ) ⊗ f̄ (c(2) + Ker f )

for any c ∈ C1. �

3.5 Bialgebras and Hopf algebras

Definition 3.26. A bialgebra is a quintuple (B, µ,∆, η, ε) where B is a vector space and

µ : B ⊗ B→ B ∆ : B→ B ⊗ B
η :C→ B ε : B→ C

are linear maps so that (B, µ, η) is an algebra, (B,∆, ε) is a coalgebra and the following further
axioms hold

∆ ◦ µ = (µ ⊗ µ) ◦ (idB ⊗ SB,B ⊗ idB) ◦ (∆ ⊗ ∆) (H4)
∆ ◦ η = η ⊗ η (H5)
ε ◦ µ = ε ⊗ ε (H5’)
ε ◦ η = idC. (H6)
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The following commutative diagrams visualize the new axioms:

B

B ⊗ B

µ

-

B ⊗ B

∆

-

B ⊗ B ⊗ B ⊗ B

∆ ⊗ ∆

?

idB ⊗ SB,B ⊗ idB

- B ⊗ B ⊗ B ⊗ B

µ ⊗ µ

6

(H4)

B ⊗ B �
∆

B

C ⊗ C

η ⊗ η

6

� - C

η

6

B ⊗ B
µ
- B

C ⊗ C

ε ⊗ ε

?
� - C

ε

?

(H5 and H5’)

B

C � -

η

-

C

ε

-

(H6)

In the following exercise it is checked that the axioms (H4), (H5), (H5’), (H6) state alternatively
that ∆ and ε are homomorphisms of algebras, or that µ and η are homomorphisms of coalgebras.
We will soon also motivate this definition with properties of representations.

Exercise 15 (Alternative definitions of bialgebra)
Let B be a vector space and suppose that

µ : B ⊗ B→ B η : C→ B
∆ : B→ B ⊗ B ε : B→ C

are linear maps such that (B, µ, η) is an algebra and (B,∆, ε) is a coalgebra.

Show that the following conditions are equivalent:

(i) Both ∆ and ε are homomorphisms of algebras.

(ii) Both µ and η are homomorphisms of coalgebras.

(iii) (B, µ,∆, η, ε) is a bialgebra.

Above we of course needed algebra and coalgebra structures on C and on B ⊗ B. The algebra
structure on C is using the product of complex numbers. The coalgebra structure on C is such
that the coproduct and counit are both identity maps of C, when we identify C ⊗ C � C (for the
coproduct) and note that C itself is the ground field (for the counit). The algebra structure on
B ⊗ B is the tensor product of two copies of the algebra B, i.e. with the product determined by
(b′ ⊗ b′′) (b′′′ ⊗ b′′′′) = b′b′′′ ⊗ b′′b′′′′. The coalgebra structure in B ⊗ B is the tensor product of two
copies of the coalgebra B, i.e. when ∆(b′) =

∑
b′(1) ⊗ b′(2) and ∆(b′′) =

∑
b′′(1) ⊗ b′′(2) then the coproduct

of b′ ⊗ b′′ is
∑(

b′(1) ⊗ b′′(1)

)
⊗

(
b′(2) ⊗ b′′(2)

)
and counit is simply b′ ⊗ b′′ 7→ ε(b′) ε(b′′).

Hopf algebras have one more structural map and one more axiom:

38



Hopf algebras and representations Spring 2011

Definition 3.27. A Hopf algebra is a sextuple (H, µ,∆, η, ε, γ), where H is a vector space and

µ : H ⊗H→ H ∆ : H→ H ⊗H
η :C→ H ε : H→ C
γ : H→ H

are linear maps such that (H, µ,∆, η, ε) is a bialgebra and the following further axiom holds

µ ◦ (γ ⊗ idH) ◦ ∆ = η ◦ ε = µ ◦ (idH ⊗ γ) ◦ ∆. (H3)

The map γ : H→ H is called antipode. The corresponding commutative diagram is

H ⊗H
idH ⊗ γ - H ⊗H

H

∆

6

ε - C
η
- H

µ

?

H ⊗H

∆

?

γ ⊗ idH

- H ⊗H

µ

6

(H3)

In the Sweedler’s sigma notation the axiom concerning the antipode reads∑
(a)

γ(a(1)) a(2) = ε(a) 1H =
∑
(a)

a(1) γ(a(2)) ∀ a ∈ H, (H3)

where 1H = η(1) is the unit of the algebra (H, µ, η) and we use the usual notation for products in
the algebra, a b := µ(a ⊗ b).

To construct antipodes for bialgebras, the following lemma occasionally comes in handy.

Exercise 16 (A lemma for construction of antipode)
Let B = (B, µ,∆, η, ε) be a bialgebra. Suppose that as an algebra B is generated by a collection
of elements (gi)i∈I. Suppose furthermore that we are given a linear map γ : B → B, which is a
homomorphism of algebras from B = (B, µ, η) to Bop = (B, µop, η), and which satisfies(

µ ◦ (γ ⊗ idB) ◦ ∆
)
(gi) = ε(gi) 1B =

(
µ ◦ (idB ⊗ γ) ◦ ∆

)
(gi) for all i ∈ I.

Show that (B, µ,∆, η, ε, γ) is a Hopf algebra.

We will later see that the antipode is always a homomorphism of algebras to the opposite algebra,
so the conditions for γ in the exercise are also necessary.

With the help of Exercises 15 and 16 one easily constructs examples of Hopf algebras, such as the
following two.

Example 3.28. The group algebraC[G] of a group G becomes a Hopf algebra with the definitions

∆(eg) = eg ⊗ eg , ε(eg) = 1 , γ(eg) = eg−1 (extended linearly).

We call this Hopf algebra the Hopf algebra of the group G, and continue to use the notation C[G]
for it.
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Example 3.29. The algebra of polynomials C[x] becomes a Hopf algebra with the definitions

∆(xn) =

n∑
k=0

(
n
k

)
xk
⊗ xn−k , ε(xn) = δn,0 , γ(xn) = (−1)n xn (extended linearly),

where (
n
k

)
=

n!
k! (n − k)!

are the binomial coefficients, and we’ve used the Kronecker delta symbol

δn,m =

{
1 if n = m
0 if n , m .

We call this Hopf algebra the binomial Hopf algebra.

Motivated by the above examples, we give names to some elements whose coproduct resembles
one of the two examples.

Definition 3.30. Let (C,∆, ε) be a coalgebra. A non-zero element a ∈ C is said to be grouplike if
∆(a) = a ⊗ a. Let (B, µ,∆, η, ε) be a bialgebra. A non-zero element x ∈ B is said to be primitive if
∆(x) = x ⊗ 1B + 1B ⊗ x.

All the basis vectors eg, g ∈ G, in the Hopf algebra C[G] of a group G are grouplike. In fact, they
are the only grouplike elements of C[G], as follows from the exercise below.

Exercise 17 (Linear independence of grouplike elements)
Show that the grouplike elements in a coalgebra are linearly independent.

Here is one obvious example more.

Example 3.31. If (B, µ, η,∆, ε) is a bialgebra, then the unit 1B = η(1) ∈ B is grouplike by the
property (H5).

Any scalar multiple of the indeterminate x in the binomial Hopf algebra C[x] is primitive. In
fact, it is easy to see that the primitive elements of a bialgebra form a vector subspace. A typical
example comes from a natural Hopf algebra structure for the universal enveloping algebraU(g)
of a Lie algebra g, where the subspace of primitive elements is precisely g ⊂ U(g).

Exercise 18 (Grouplike and primitive elements)
Let (B, µ, η,∆, ε) be a bialgebra. Show that:

(a) for any grouplike element a ∈ B we have ε(a) = 1

(b) for any primitive element x ∈ B we have ε(x) = 0.

If B furthermore admits a Hopf algebra structure with the antipode γ : B→ B then show:

(c) any grouplike element a ∈ B is invertible and we have γ(a) = a−1

(d) for any primitive element x ∈ B we have γ(x) = −x.

Definition 3.32. Let B1 = (B1, µ1,∆1, η1, ε1) and B2 = (B2, µ2,∆2, η2, ε2) be two bialgebras. A linear
map f : B1 → B2 is said to be a homomorphism of bialgebras if f is a homomorphism of algebras
from (B1, µ1, η1) to (B2, µ2, η2), and a homomorphism of coalgebras from (B1,∆1, ε1) to (B2,∆2, ε2).
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In other words, a homomorphism of bialgebras is a linear map f that preserves the structural
maps in the following sense

f ◦ µ1 = µ2 ◦ ( f ⊗ f ), f ◦ η1 = η2, ( f ⊗ f ) ◦ ∆1 = ∆2 ◦ f , ε1 = ε2 ◦ f .

Definition 3.33. Let H1 = (H1, µ1,∆1, η1, ε1, γ1) and H2 = (H2, µ2,∆2, η2, ε2, γ2) be two Hopf
algebras. A linear map f : H1 → H2 is said to be a homomorphism of Hopf algebras if f is a
homomorphism of bialgebras from (H1, µ1,∆1, η1, ε1) to (H2, µ2,∆2, η2, ε2) and furthermore

f ◦ γ1 = γ2 ◦ f .

In fact, one can show that in the definition of a homomorphism of Hopf algebras the condition that
f respects the antipode already follows from the properties of a homomorphism of bialgebras.

As usual, an isomorphism is a bijective homomorphism. One can explicitly classify low dimen-
sional bialgebras and Hopf algebras up to isomorphism.

Exercise 19 (Two dimensional bialgebras)

(a) Classify all two-dimensional bialgebras up to isomorphism.

(b) Which of the two-dimensional bialgebras admit a Hopf algebra structure?

Motivation for the definitions from representations

Recall that for a finite group we were able not only to take direct sums of representations, but also
we made the tensor product of representations a representation, the one dimensional vector space
a trivial representation, and the dual of a representation a representation.

Suppose now A is an algebra and ρV : A→ End(V) and ρW : A→ End(W) are representations of
A in V and W, respectively. Taking direct sums of the representations works just like before: we
set

a.(v + w) = ρV(v) + ρW(w) for all v ∈ V ⊂ V ⊕W and w ∈W ⊂ V ⊕W.

Trivial representation

Can we make the ground fieldC a trivial representation? For a general algebra there is no canonical
way of doing so — one needs some extra structure. Conveniently, the counit is exactly what is
needed. Indeed, when we interpret End(C) � C, identifying a linear map C → C with its sole
eigenvalue, a map ε : A→ C becomes a one dimensional representation if and only if the axioms
(H5’) and (H6) hold. So when we have a counit ε we set

a.z = ε(a) z ∈ C for z ∈ C, (3.4)

and call this the trivial representation. Note that using the counit of the Hopf algebra of a group,
Example 3.28, the trivial representation of a group is what we defined it to be before.

Tensor product representation

It seems natural to ask how to take tensor products of representations of algebras, and again the
answer is that one needs some extra structure. Now the coproduct ∆ : A→ A ⊗ A with the axioms
(H4) and (H5) precisely guarantees that the formula

ρV⊗W = (ρV ⊗ ρW) ◦ ∆
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defines a representation of A on V ⊗W. With Sweedler’s sigma notation this reads

a.(v ⊗ w) =
∑
(a)

(a(1).v) ⊗ (a(2).w) for v ∈ V, w ∈W. (3.5)

In particular, using the coproduct of the Hopf algebra of a group, Example 3.28, this definition
coincides with the definition of tensor product representation we gave when discussing groups.

Exercise 20 (Trivial representation and tensor product representation)
Check that the formulas (3.4) and (3.5) define representations if we assume the axioms mentioned.
Compare with Exercise 15. Check also that with the Hopf algebra structure on C[G] given in
Example 3.28, these definitions agree with the corresponding representations of groups.

Dual representation and the representation Hom(V,W)

How about duals then? For any representation V we’d like to make V∗ = Hom(V,C) a representa-
tion. This can be seen as a particular case of Hom(V,W), where both V and W are representations
— we take W to be the trivial one dimensional representation C. When we have not only a
bialgebra, but also an antipode satisfying (H3), then the formula

a.T =
∑
(a)

ρW(a(1)) ◦ T ◦ ρV(γ(a(2))) (3.6)

turns out to work, as we will verify a little later. Again, the antipode of Example 3.28 leads to the
definitions we gave for groups.

Exercise 21 (Dual representation and the relation of W ⊗ V∗ and Hom(V,W) for Hopf algebras)

(a) Let ρV : A → End(V) be a representation of a Hopf algebra A = (A, µ,∆, η, ε, γ). Check that
the formula one gets for the dual representation V∗ = Hom(V,C) from Equation (3.6) is

a.ϕ =
(
ρV(γ(a))

)∗
(ϕ) for all a ∈ A, ϕ ∈ V∗, (3.7)

that is, any a ∈ A acts on the dual by the transposis of the action of the antipode of a.

(b) Check that when V and W are finite dimensional representations of a Hopf algebra A, then
the representations W ⊗ V∗ and Hom(V,W) are isomorphic, with the isomorphism as in
Exercise 3.

Although we have given a representation theoretic interpretation for the coproduct ∆, the counit
ε, and the antipode γ, the role of the axioms (H1’) and (H2’) of a coalgebra hasn’t been made clear
yet. It is easy to see, however, that the canonical linear isomorphism between the triple tensor
products

(V1 ⊗ V2) ⊗ V3 and V1 ⊗ (V2 ⊗ V3)

becomes an isomorphism of representations with the definition (3.5) when coassociativity (H1’) is
imposed. Likewise, the canonical identifications of V with

V ⊗ C and C ⊗ V

become isomorphisms of representations with the definition (3.4) when counitality (H2’) is im-
posed.

Thus we see that the list of nine axioms (H1), (H1’), (H2), (H2’), (H3), (H4), (H5), (H5’), (H6) is
very natural in view of standard operations that we want to perform for representations.

One more remark is in order: the “flip”

SV,W : V ⊗W →W ⊗ V v ⊗ w 7→ w ⊗ v

42



Hopf algebras and representations Spring 2011

gives a rather natural vector space isomorphism between V⊗W and W⊗V. With the definition (3.5),
it would be an isomorphism of representations if we required the coproduct to be cocommutative,
i.e. that the coproduct ∆ is equal to the opposite coproduct ∆cop := SA,A ◦ ∆. However, we choose
not to require cocommutativity in general — in fact the most interesting examples of Hopf algebras
are certain quantum groups, where instead of “flipping” the factors of tensor product by SV,W we
can do “braiding” on the factors. We will return to this point later on in the course.

3.6 The dual of a coalgebra

When f : V →W is a linear map, its transpose is the linear map f ∗ : W∗
→ V∗ given by

〈 f ∗(ϕ), v〉 = 〈ϕ, f (v)〉 for all ϕ ∈W∗, v ∈ V.

Recall also that we have the inclusion V∗ ⊗W∗
⊂ (V ⊗W)∗ with the interpretation

〈ψ ⊗ ϕ, v ⊗ w〉 = 〈ψ, v〉 〈ϕ,w〉 for ψ ∈ V∗, ϕ ∈W∗, v ∈ V, w ∈W,

and observe that the dual of the ground field can be naturally identified with the ground field
itself

C∗ � C via C∗ 3 φ ↔ 〈φ, 1〉 ∈ C.

Theorem 3.34
Let C be a coalgebra, with coproduct ∆ : C→ C ⊗ C and counit ε : C→ C. Set A = C∗ and

µ = ∆∗
∣∣∣
C∗⊗C∗ : A ⊗ A→ A , η = ε∗ : C→ A.

Then (A, µ, η) is an algebra.

Proof. Denote 1A = η(1). Compute for ϕ ∈ C∗ = A and c ∈ C, using (H2’) in the last step,

〈ϕ 1A, c〉 = 〈ϕ ⊗ 1A,∆(c)〉 =
∑
(c)

〈ϕ, c(1)〉 〈1A, c(2)〉 = 〈ϕ,
∑
(c)

c(1)ε(c(2))〉 = 〈ϕ, c〉

to obtain ϕ 1A = ϕ. Similarly one proves 1A ϕ = ϕ and gets unitality for A. Associativity of µ = ∆∗

is also easy to show using the coassociativity (H2’) of ∆. �

In fact taking the dual is a contravariant functor from the category of coalgebras to the category
of algebras, as follows from the following observation.

Lemma 3.35
Let C j = (C j,∆ j, ε j), j = 1, 2, be two coalgebras and let f : C1 → C2 be a homomorphism of
coalgebras. Let f ∗ : C∗2 → C∗1 be the transpose of f . Then f ∗ is a homomorphism of algebras from
(C∗2,∆

∗

2, ε
∗

2) to (C∗1,∆
∗

1, ε
∗

1)

Remark 3.36. If f : C1 → C2 and g : C2 → C3 are linear maps, then the transposes of course
satisfy (g ◦ f )∗ = f ∗ ◦ g∗.

Proof. The property of being a homomorphism of coalgebras means ( f ⊗ f ) ◦ ∆1 = ∆2 ◦ f : C1 →

C2 ⊗ C2 and ε1 = ε2 ◦ f : C1 → C. Taking the transpose of the latter we get the equality ε∗1 = f ∗ ◦ ε∗2
of linear maps C∗ → C∗1. With the usual identification C∗ � C, this states that the image under f ∗

of the unit of C∗2 is the unit of C∗1. Similarly, we take the transpose of the first property, and obtain
∆∗1 ◦ ( f ⊗ f )∗ = f ∗ ◦ ∆∗2, for maps (C2 ⊗ C2)∗ → C∗1. Note that C∗2 ⊗ C∗2 ⊂ (C2 ⊗ C2)∗, and on this
subspace the maps ( f ⊗ f )∗ and f ∗ ⊗ f ∗ coincide. We conclude that the image under f ∗ of a product
in C∗2 is a product in C∗1 of images under f ∗. �
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3.7 Convolution algebras

One of the main goals of this section is to prove the following facts about the antipode.

Theorem 3.37
Let H = (H, µ,∆, η, ε, γ) be a Hopf algebra.

(!) The antipode γ is unique in the following sense: if γ′ : H → H is another linear map which
satisfies (H3), then γ′ = γ.

(i) The map γ : H→ H is a homomorphism of algebras from H = (H, µ, η) to Hop = (H, µop, η).

(ii) The map γ : H → H is a homomorphism of coalgebras from H = (H,∆, ε) to Hcop =
(H,∆cop, ε).

In other words the property (i) says that we have

γ(1H) = 1H and γ(a b) = γ(b)γ(a) ∀a, b ∈ H.

The property (ii) says that we have

γ(∆(a)) =
∑
(a)

γ(a(2))γ(a(1)) and ε(γ(a)) = ε(a) ∀a ∈ H.

Definition 3.38. Let C = (C,∆, ε) be a coalgebra and A = (A, µ, η) an algebra. For f , g linear
maps C→ A define the convolution product of f and g as the linear map

f ? g = µ ◦ ( f ⊗ g) ◦ ∆ : C→ A,

and the convolution unit 1? as the linear map

1? = η ◦ ε : C→ A.

The convolution algebra associated with C and A is the vector space Hom(C,A) equipped with
product ? and unit 1?. The convolution algebra of a bialgebra B = (B, µ,∆, η, ε) is the convolution
algebra associated with the coalgebra (B,∆, ε) and the algebra (B, µ, η), and the convolution algebra
of a Hopf algebra is defined similarly.

Proposition 3.39
The convolution algebra is an associative unital algebra.

Sketch of a proof. Associativity for the convolution algebra follows easily from the associativity
of A and coassociativity of C, and unitality of the convolution algebra follows easily from the
unitality of A and counitality of C. �

Concolution algebras have applications for example in combinatorics. For now, we will use them
to prove properties of the antipode.

Proof of Theorem 3.37. Let us first prove the uniqueness (!). By (H3), the antipode γ ∈ Hom(H,H)
is the two-sided convolutive inverse of idH ∈ Hom(H,H) in the convolution algebra of the Hopf
algebra H, that is we have

γ ? idH = 1? = idH ? γ.

In an associative algebra a left inverse has to coincide with a right inverse if both exist. Indeed
suppose that γ′ would also satisfy (H3) so that in particular idH ? γ′ = 1?. Then we compute

γ = γ ? 1? = γ ? (idH ? γ
′) = (γ ? idH) ? γ′ = 1? ? γ′ = γ′.
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Then let us prove (i): the antipode is a homomorphism of algebras to the opposite algebra. We
must show that the antipode preserves the unit, γ ◦ η = η, and that it reverses the product,
γ ◦ µ = µop

◦ (γ ⊗ γ). Preserving unit is easily seen: recall that 1H is grouplike, ∆(1H) = 1H ⊗ 1H
and then apply (H3) to 1H to see that

1H
(H3)
=

(
µ ◦ (γ ⊗ idH)

)
(1H ⊗ 1H)) = γ(1H) 1H

(H2)
= γ(1H).

Now consider the convolution algebra Hom(H ⊗H,H) associated with the coalgebra H ⊗H with
coproduct and counit as follows

∆2(a ⊗ b) =
∑
(a),(b)

a(1) ⊗ b(1) ⊗ a(2) ⊗ b(2) =
(
(idH ⊗ SH,H ⊗ idH) ◦ (∆ ⊗ ∆)

)
(a ⊗ b)

ε2(a ⊗ b) = ε(a) ε(b)

and with the algebra H = (H, µ, η). Note that we can write ∆2 = (idH ⊗ SH,H ⊗ idH) ◦ (∆ ⊗ ∆) and
ε2 = ε ⊗ ε. We will show (a) that µ ∈ Hom(H ⊗H,H) has a right convolutive inverse γ ◦ µop, and
(b) that µ has a left convolutive inverse µ ◦ (γ ⊗ γ). To prove (a), compute for a, b ∈ H

µ ? (γ ◦ µ) = µ ◦
(
µ ⊗ (γ ◦ µ)

)
◦ ∆2

= µ ◦ (idH ⊗ γ) ◦ (µ ⊗ µ) ◦ (idH ⊗ SH,H ⊗ idH) ◦ (∆ ⊗ ∆)
(H4)
= µ ◦ (idH ⊗ γ) ◦ ∆ ◦ µ

(H3)
= η ◦ ε ◦ µ

(H5’)
= η ◦ (ε ⊗ ε) = η ◦ ε2 = 1?

To prove (b), compute in the Sweedler’s sigma notation((
µ ◦ SH,H ◦ (γ ⊗ γ)

)
? µ

)
(a ⊗ b) =

∑
(a),(b)

(
γ(b(1))γ(a(1))

) (
a(2) b(2)

)
(H3) for a

= ε(a)
∑
(b)

γ(b(1)) 1H b(2)

(H3) for b
= ε(a)ε(b) 1H,

which is the value of 1? = η ◦ ε2 on the element a ⊗ b. Now a right inverse of µ has to coincide
with a left inverse of µ, so we get

γ ◦ µ = µ ◦ SH,H ◦ (γ ⊗ γ),

as we wanted.

We leave it as an exercise for the reader to prove (ii) by finding appropriate formulas for right and
left inverses of ∆ in the convolution algebra Hom(H,H ⊗H). �

Corollary 3.40
For H = (H, µ,∆, η, ε, γ) a Hopf algebra, V and W representations of (H, µ, η), the space Hom(V,W)
of linear maps between the representations becomes a representation by the formula of Equa-
tion (3.6), (

a.T
)
(v) =

∑
(a)

a(1).
(
T(γ(a(2)).v)

)
for a ∈ H, T ∈ Hom(V,W), v ∈ V.

Proof. The property 1H.T = T is obvious in view of ∆(1H) = 1H ⊗ 1H and γ(1H) = 1H. Using the
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facts that γ : H→ Hop and ∆ : H→ H ⊗H are homomorphisms of algebras, we also check(
a.(b.T)

)
(v) =

∑
(a)

a(1).
(
(b.T)(γ(a(2)).v)

)
=

∑
(a),(b)

a(1).b(1).
(
T(γ(b(2))γ(a(2)).v)

)
γ homom.

=
∑
(a),(b)

(a(1)b(1)).
(
T(γ(a(2)b(2)).v)

)
∆ homom.

=
∑
(ab)

(ab)(1).
(
T(γ((ab)(2)).v)

)
=

(
(ab).T)

)
(v).

�

Corollary 3.41
Suppose that H = (H, µ,∆, η, ε, γ) is a Hopf algebra which is either commutative or cocommutative.
Then the antipode is involutive, that is γ ◦ γ = idH.

Proof. Assume that A is commutative. Now, since γ is a morphism of algebras A→ Aop we have

γ2 ? γ = µ ◦ (γ2
⊗ γ) ◦ ∆

= γ ◦ µop
◦ (γ ⊗ idA) ◦ ∆

= γ ◦ µ ◦ (γ ⊗ idA) ◦ ∆

= γ ◦ η ◦ ε = η ◦ ε = 1?.

We conclude that γ2 is a left inverse of γ in the convolution algebra (one could easily show that
γ2 is in fact a two-sided inverse). But idA is a right (in fact two-sided) inverse of γ, and as usually
in associative algebras we therefore get γ2 = idA. The case of a cocommutative Hopf algebra is
handled similarly. �

Above we showed that the antipode is an involution if the Hopf algebra is commutative or
cocommutative. The cocommutativity ∆(x) = ∆cop(x) will later be generalized a little: braided
Hopf algebras have ∆(x) and ∆cop(x) conjugates of each other and we will show that the antipode
is always invertible in such a case — in fact we will see that the square of the antipode is an
inner automorphism of a braided Hopf algebra. It can also be shown that the antipode of a finite
dimensional Hopf algebra is always invertible. The following exercise characterizes invertibility
of the antipode in terms of the existence of antipodes for the opposite and co-opposite bialgebras.

Exercise 22 (Opposite and co-opposite bialgebras and Hopf algebras)
Suppose that A = (A, µ,∆, η, ε) is a bialgebra.

(a) Show that all of the following are bialgebras:

- the opposite bialgebra Aop = (A, µop,∆, η, ε)

- the co-opposite bialgebra Acop = (A, µ,∆cop, η, ε)

- the opposite co-opposite bialgebra Aop,cop = (A, µop,∆cop, η, ε).

Suppose furthermore that γ : A→ A satisfies (H3) so that (A, µ,∆, η, ε, γ) is a Hopf algebra.

(b) Show that Aop,cop = (A, µop,∆cop, η, ε, γ) is a Hopf algebra, called the the opposite co-opposite
Hopf algebra.

(c) Show that the following conditions are equivalent

- the opposite bialgebra Aop admits an antipode γ̃

- the co-opposite bialgebra Acop admits an antipode γ̃

- the antipode γ : A→ A is an invertible linear map, with inverse γ̃.
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Convolution algebras are practical also for checking that any map that preserves a bialgebra
structure must in fact preserve a Hopf algebra structure (this is in fact a generalization of the
uniqueness of the antipode).

Lemma 3.42
Let H = (H, µ,∆, η, ε, γ) and H′ = (H′, µ′,∆′, η′, ε′, γ′) be Hopf algebras, and let f : H → H′ be a
homomorphism of bialgebras. Then we have f ◦ γ = γ′ ◦ f .

Proof. Consider the convolution algebra Hom(H,H′) associated to the coalgebra (H,∆, ε) and
algebra (H′, µ′, η′). It is easy to show that both f ◦γ and γ′ ◦ f are inverses of f in this convolution
algebra, and consequently they must be equal. �

Exercise 23 (The incidence coalgebra and incidence algebra of a poset)
A partially ordered set (poset) is a set P together with a binary relation � on P which is reflexive
(x � x for all x ∈ P), antisymmetric (if x � y and y � x then x = y) and transitive (if x � y and y � z
then x � z). Notation x ≺ y means x � y and x , y. Notation x � y means y � x. If x, y ∈ P and
x � y, then we call the set

[x, y] =
{
z ∈ P | x � z and z � y

}
an interval in P.

Suppose that P is a poset such that all intervals in P are finite (a locally finite poset). Let IP be the
set of intervals of P, and let CP be the vector space with basis IP. Define ∆ : CP → CP ⊗ CP and
ε : CP → C by linear extension of

∆([x, y]) =
∑

z∈[x,y]

[x, z] ⊗ [z, y] , ε([x, y]) =

{
1 if x = y
0 if x ≺ y .

(a) Show that CP = (CP,∆, ε) is a coalgebra (we call CP the incidence coalgebra of P).

The incidence algebra AP of the poset P is the convolution algebra associated with the coalgebra
CP and the algebra C. Define ζ ∈ AP by its values on basis vectors ζ([x, y]) = 1 for all intervals
[x, y] ∈ IP.

(b) Show that ζ is invertible in AP, with inverse m (called the Möbius function of P) whose values
on the basis vectors are determined by the recursions

m([x, x]) = 1 for all x ∈ P
m([x, y]) = −

∑
z : x�z≺y m([x, z]) for all x ∈ P, y � x.

(c) Let f : P→ C be a function and suppose that there is a p ∈ P such that f (x) = 0 unless x � p.
Prove the Möbius inversion formula: if

g(x) =
∑
y�x

f (y)

then
f (x) =

∑
y�x

g(y) m([y, x]).

(Hint: It may be helpful to define a f̂ ∈ AP with the property f̂ ([p, x]) = f (x) and ĝ = f̂ ? ζ.)

3.8 Representative forms

Let A = (A, µ, η) be an algebra.

Suppose that V is a finite dimensional A-module, and that u1,u2, . . . ,un is a basis of V. Note that
for any a ∈ A we can write a.u j =

∑n
i=1 λi, j ui with λi, j ∈ C, i, j = 1, 2, . . . ,n. The coefficients depend
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linearly on a, and thus they define elements of the dual λi, j ∈ A∗ called the representative forms of
the A-module V with respect to the basis u1,u2, . . . ,un. The left multiplication of the basis vectors
by elements of A now takes the form

a.u j =

n∑
i=1

〈λi, j, a〉 ui.

The A-module property gives

n∑
i=1

〈λi, j, ab〉 ui = (ab).v = a.(b.v) =

n∑
i,k=1

〈λi,k, a〉 〈λk, j, b〉 ui,

that is

〈λi, j, ab〉 =

n∑
k=1

〈λi,k, a〉 〈λk, j, b〉 for all i, j = 1, 2, . . . ,n. (3.8)

3.9 The restricted dual of algebras and Hopf algebras

Recall that for C a coalgebra, the dual space C∗ becomes an algebra with the structural maps
(product and unit) which are the transposes of the structural maps (coproduct and counit) of the
coalgebra.

It then seems natural to ask whether the dual of an algebra A = (A, µ, η) is a coalgebra. When we
take the transposes of the structural maps

η : C→ A and µ : A ⊗ A→ A,

we get
η∗ : C∗ → A∗

which could serve as a counit when we identify C∗ � C, but the problem is that the candidate for
a coproduct

µ∗ : A∗ → (A ⊗ A)∗ ⊃ A∗ ⊗ A∗,

takes values in the space (A ⊗ A)∗ which in general is larger than the second tensor power of the
dual, A∗ ⊗A∗. The cure to the situation is to restrict attention to the preimage of the second tensor
power of the dual.

Definition 3.43. The restricted dual of an algebra A = (A, µ, η) is the subspace A◦ ⊂ A∗ defined
as

A◦ = (µ∗)−1(A∗ ⊗ A∗).

Example 3.44. Let V be a finite dimensional A-module with basis u1,u2, . . . ,un, and denote by
λi, j ∈ A∗, i, j = 1, 2, . . . ,n, the representative forms. Then from Equation (3.8) we get for any a, b ∈ A

〈µ∗(λi, j), a ⊗ b〉 = 〈λi, j, µ(a ⊗ b)〉 = 〈λi, j, ab〉 =

n∑
k=1

〈λi,k, a〉 〈λk, j, b〉 =

n∑
k=1

〈λi,k ⊗ λk, j, a ⊗ b〉.

We conclude that

µ∗(λi, j) =

n∑
k=1

λi,k ⊗ λk, j ∈ A∗ ⊗ A∗, (3.9)

and therefore λi, j ∈ A◦.
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The example shows that all representative forms of finite dimensional A-modules are in the
restricted dual, and we will soon see that the restricted dual is spanned by these.

The goal of this section is to prove the following results.

Theorem 3.45
For A = (A, µ, η) an algebra, the restricted dual

(A◦, µ∗|A◦ , η∗|A◦ )

is a coalgebra.

Theorem 3.46
For H = (H, µ,∆, η, ε, γ) a Hopf algebra, the restricted dual

(H◦,∆∗|H◦×H◦ , µ
∗
|H◦ , ε

∗, η∗|H◦ , γ
∗
|A◦ )

is a Hopf algebra.

Admitting the above results, we notice that one-dimensional representations of an algebra admit
the following characterization.

Exercise 24 (Grouplike elements of the restricted dual)
Let A = (A, µ, η) be an algebra and consider its restricted dual A◦ = (µ∗)−1(A∗ ⊗ A∗) with the
coproduct ∆ = µ∗|A◦ and counit ε = η∗|A◦ . Show that for a linear map f : A→ C the following are
equivalent:

- The function f is a homomorphism of algebras.
(Remark: An interpretation is that f defines a one-dimensional representation of A.)

- The element f is grouplike in A◦.

Before starting with the proofs of Theorems 3.45 and 3.46, we need some preparations.

Lemma 3.47
Let A = (A, µ, η) be an algebra and equip the dual A∗ with the left A-module structure of Exam-
ple 3.12. Then for any f ∈ A∗ we have

f ∈ A◦ if and only if dim (A. f ) < ∞,

where A. f ⊂ A∗ is the submodule generated by f .

In other words, the elements of the restricted dual are precisely those that generate a finite
dimensional submodule of A∗.

Remark 3.48. Observe that A◦ = (µ∗)−1(A∗ ⊗ A∗) = ((µop)∗)−1(A∗ ⊗ A∗). Thus the analogous
property holds for the right A-module structure of Example 3.12: we have f ∈ A◦ if and only if
f .A ⊂ A∗ is finite dimensional.

Proof of Lemma 3.47. Suppose first that f ∈ A◦, so that µ∗( f ) =
∑n

i=1 gi ⊗ hi, for some n ∈ N and
gi, hi ∈ A∗, i = 1, 2, . . . ,n. Then for any a, x ∈ A we get〈

a. f , x
〉

=
〈

f , xa
〉

=
〈

f , µ(x ⊗ a)
〉

=
〈
µ∗( f ), x ⊗ a

〉
=

n∑
i=1

〈
gi ⊗ hi, x ⊗ a

〉
=

n∑
i=1

〈
gi, x

〉 〈
hi, a

〉
=

〈 n∑
i=1

〈
hi, a

〉
gi, x

〉
.
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This shows that

a. f =

n∑
i=1

〈
hi, a

〉
gi

and thus A. f is contained in the linear span of g1, . . . , gn, and in particular A. f is finite dimensional.

Suppose then that dim (A. f ) < ∞. Let (gi)r
i=1 be a basis of A. f , and observe that writing a. f in

this basis we get a. f =
∑r

i=1

〈
hi, a

〉
gi for some hi ∈ A∗, i = 1, 2, . . . , r. We can then compute for any

x, y ∈ A 〈
µ∗( f ), x ⊗ y

〉
=

〈
f , xy

〉
=

〈
y. f , x

〉
=

∑
i

〈
hi, y

〉 〈
gi, x

〉
to conclude that µ∗( f ) =

∑r
i=1 gi ⊗ hi ∈ A∗ ⊗ A∗. �

It follows from the proof that for f ∈ A◦, the rank of µ∗( f ) ⊂ A∗ ⊗ A∗ is equal to the dimension of
A. f . We in fact easily see that when µ∗( f ) =

∑r
i=1 gi ⊗ hi ∈ A∗ ⊗ A∗ with r minimal, then (gi)r

i=1 is a
basis of A. f and (hi)r

i=1 is a basis of f .A.

Corollary 3.49
If f ∈ A◦, then we have µ∗( f ) ⊂ (A. f ) ⊗ ( f .A) ⊂ A◦ ⊗ A◦ and therefore

µ∗(A◦) ⊂ A◦ ⊗ A◦.

Proof. In the above proof we’ve written µ∗( f ) =
∑

i gi ⊗ hi with gi ∈ A. f and hi ∈ f .A, so the first
inclusion follows. But we clearly have also A. f ⊂ A◦ since for any a ∈ A the submodule of A∗

generated by the element a. f is contained in A. f , and is therefore also finite dimensional. Similarly
one gets f .A ⊂ A◦. �

We observe the following.

Corollary 3.50
The restricted dual A◦ is spanned by the representative forms of finite dimensional A-modules.

Proof. In Example 3.44 we have seen that the representative forms are always in the restricted
dual. We must now show that any f ∈ A◦ can be written as a linear combination of representative
forms. To this end we consider the finite dimensional submodule A. f of A∗. Let (gi)n

i=1 be a basis
of A. f , and assume without loss of generality that g1 = f and gi = bi. f with bi ∈ A, i = 1, 2, . . . ,n.

As above we observe that there exists (hi)n
i=1 in A∗ such that a. f =

∑n
i=1

〈
hi, a

〉
gi for all a ∈ A. We

compute

a.g j = (a b j). f =

n∑
i=1

〈
hi, a b j

〉
gi =

n∑
i=1

〈
b j.hi, a

〉
gi,

so that the representative forms of A. f in the basis (gi) are λi, j = b j.hi. In particular since b1 = 1A
we have hi = λi,1. It therefore suffices to show that f can be written as a linear combination of the
elements hi. But this is evident, since the (right) submodule f .A of A∗ contains f and is spanned
by (hi). �

We may write the conclusion above even more concretely as

f = f .1A =
∑

i

〈
gi, 1A

〉
hi =

∑
i

〈
gi, 1A

〉
λi,1.

Now note that the restricted dual may in fact be trivial.
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Exercise 25 (Representations of the canonical commutation relations of quantum mechanics)
Let A be the algebra with two generators x and y, and one relation

x y − y x = 1 (“canonical commutation relation”).

(a) Show that there are no finite-dimensional representations of A except from the zero vector
space V = {0}.

(b) Conclude that A◦ = {0} and that it is impossible to equip A with a Hopf algebra structure.

Proof of Theorem 3.45. From Corollary 3.49 we see that we can interpret the structural maps as
maps between the correct spaces,

∆ = µ∗
∣∣∣
A◦ : A◦ → A◦ ⊗ A◦ and ε = η∗

∣∣∣
A◦ : A◦ → C.

To prove counitality, take f ∈ A◦ and write as before ∆( f ) = µ∗( f ) =
∑

i gi ⊗ hi, and compute for
any x ∈ A

〈(ε ⊗ idA◦ )(∆( f )), x〉 =
∑

i

ε(gi) 〈hi, x〉 =
∑

i

〈gi, 1A〉 〈hi, x〉 = 〈µ∗( f ), 1A ⊗ x〉 = 〈 f , 1Ax〉 = 〈 f , x〉,

which shows (ε ⊗ idA◦ )(∆( f )) = f , and a similar computation shows (idA◦ ⊗ ε)(∆( f )) = f . Coasso-
ciativity of µ∗ follows from taking the transpose of the associativity of µ once one notices that the
transpose maps have the appropriate alternative expressions

(idA ⊗ µ)∗
∣∣∣
A∗⊗A∗ = id∗A ⊗ µ

∗ = idA∗ ⊗ µ
∗ and (µ ⊗ idA)∗

∣∣∣
A∗⊗A∗ = µ∗ ⊗ id∗A = µ∗ ⊗ idA∗

on the subspaces where we need them. �

Exercise 26 (Taking the restricted dual is a contravariant functor)
Let A and B be two algebras and f : A→ B a homomorphism of algebras, and let f ∗ be its transpose
map B∗ → A∗.

(a) Show that for any ϕ ∈ B◦ we have f ∗(ϕ) ∈ A◦.

(b) Show that f ∗|B◦ : B◦ → A◦ is a homomorphism of coalgebras.

To handle restricted duals of Hopf algebras, we present yet a few lemmas which say that the
structural maps take values in the appropriate subspaces.

Lemma 3.51
Let B = (B, µ,∆, η, ε) be a bialgebra. Then we have ∆∗(B◦ ⊗ B◦) ⊂ B◦. Also we have µ∗(ε∗(1)) =
ε∗(1) ⊗ ε∗(1) so that ε∗(1) ∈ B◦.

Proof. Suppose f1, f2 ∈ B◦, and write

µ∗( fk) =
∑

i

g(k)
i ⊗ h(k)

i for k = 1, 2.

To show that ∆∗( f1 ⊗ f2) ∈ B◦, by definition we need to show that µ∗(∆∗( f1 ⊗ f2)) ∈ B∗ ⊗ B∗. Let
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a, b ∈ B and notice that the axiom (H4) saves the day in the following calculation:

〈µ∗
(
∆∗( f1 ⊗ f2)

)
, a ⊗ b〉 = 〈 f1 ⊗ f2,∆

(
µ(a ⊗ b)

)
〉

(H4)
=

∑
(a),(b)

〈 f1 ⊗ f2, a(1)b(1) ⊗ a(2)b(2)〉

=
∑
(a),(b)

〈 f1, a(1)b(1)〉 〈 f2, a(2)b(2)〉

=
∑
(a),(b)

∑
i, j

〈g(1)
i , a(1)〉 〈h

(1)
i , b(1)〉 〈g

(2)
j , a(2)〉 〈h

(2)
j , b(2)〉

=
∑

i, j

〈g(1)
i ⊗ g(2)

j ,∆(a)〉 〈h(1)
i ⊗ h(2)

j ,∆(b)〉

=
∑

i, j

〈∆∗(g(1)
i ⊗ g(2)

j ) ⊗ ∆∗(h(1)
i ⊗ h(2)

j ), a ⊗ b〉 .

We conclude that

µ∗
(
∆∗( f1 ⊗ f2)

)
=

∑
i, j

∆∗
(
g(1)

i ⊗ g(2)
j

)
︸          ︷︷          ︸

∈ B∗

⊗∆∗
(
h(1)

i ⊗ h(2)
j

)
︸          ︷︷          ︸

∈ B∗

∈ B∗ ⊗ B∗,

and since the images under ∆∗|B◦⊗B◦ of simple tensors are in B◦, the assertion about ∆∗ follows.
This computation also shows that axiom (H4) holds in the restricted dual.

To prove the assertion about ε∗, note first that with the usual identifications 〈ε∗(1), a〉 = 〈1, ε(a)〉 =
ε(a). Take a, b ∈ B and compute

〈µ∗(ε∗(1)), a ⊗ b〉 = 〈1, ε(ab)〉 = ε(a) ε(b) = 〈ε∗(1) ⊗ ε∗(1), a ⊗ b〉.

In fact this also shows that axiom (H5) holds in the restricted dual. �

Lemma 3.52
Let H = (H, µ,∆, η, ε, γ) be a Hopf algebra. Then we have γ∗(H◦) ⊂ H◦.

Proof. Let f ∈ H◦, and for a, b ∈ H compute

〈µ∗(γ∗( f )), a ⊗ b〉 = 〈 f , γ(ab)〉 = 〈 f , γ(b)γ(a)〉 = 〈µ∗( f ), γ(b) ⊗ γ(a)〉

=
∑

i

〈gi, γ(b)〉 〈hi, γ(a)〉 =
∑

i

〈γ∗(gi), b〉 〈γ∗(hi), a〉 =
∑

i

〈γ∗(hi) ⊗ γ∗(gi), a ⊗ b〉.

Thus we have
µ∗(γ∗( f )) =

∑
i

γ∗(hi) ⊗ γ∗(gi) ∈ H∗ ⊗H∗.

�

Sketch of a proof of Theorem 3.46. We have checked that the structural maps take values in the appro-
priate spaces (restricted dual or its tensor powers) when their domains of definition are restricted
to the appropriate spaces. Taking transposes of all axioms of Hopf algebras, and noticing that the
transposes of tensor product maps coincide with the tensor product maps of transposes on the
subspaces of our interest, one can mechanically check all the axioms for the Hopf algebra H◦. �

Exercise 27 (Representative forms in a representation of the Laurent polynomial algebra)
Let A = C[t, t−1] � C[Z] be the algebra of Laurent polynomials

A =

 N∑
n=−N

cntn
∣∣∣∣ N ∈N, c−N, c−N+1, . . . , cN−1, cN ∈ C

 .
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Define the s ∈ A∗ and gz ∈ A∗, for z ∈ C \ {0}, by the formulas

〈gz, tn
〉 = zn

〈s, tn
〉 = n.

(a) Show that s ∈ A◦ and gz ∈ A◦.

Let us equip A with the Hopf algebra structure such that ∆(t) = t ⊗ t.

(b) Let z ∈ C \ {0}. Consider the finite dimensional A-module V with basis u1,u2, . . . ,un such
that

t.u j = z u j + u j−1 ∀ j > 1 and t.u1 = zu1.

Define the representative forms λi, j ∈ A◦ by a.u j =
∑n

i=1〈λi, j, a〉 ui. Show that we have the
following equalities in the Hopf algebra A◦:

λi, j =


0 if i > j
gz if i = j

zi− j

( j−i)! s (s − 1) · · · (s + i − j + 1) gz if i < j
.

Exercise 28 (The restricted dual of the binomial Hopf algebra)
Given two Hopf algebras (Ai, µi,∆i, ηi, εi, γi), i = 1, 2, we can form the tensor product of Hopf
algebras by equipping A1 ⊗ A2 with the structural maps

µ = (µ1 ⊗ µ2) ◦ (idA1 ⊗ SA2,A1 ⊗ idA2 ) ∆ = (idA1 ⊗ SA1,A2 ⊗ idA2 ) ◦ (∆1 ⊗ ∆2)

η = η1 ⊗ η2 ε = ε1 ⊗ ε2 γ = γ1 ⊗ γ2.

Let A = C[x] be the algebra of polynomials in the indeterminate x, equipped with the unique Hopf
algebra structure such that ∆(x) = 1 ⊗ x + x ⊗ 1 (the binomial Hopf algebra). Show that we have
an isomorphism of Hopf algebras

A◦ � A ⊗ C[C],

that is, the restricted dual of A is isomorphic to the tensor product of the Hopf algebra A with the
Hopf algebra of the additive group of complex numbers.

3.10 A semisimplicity criterion for Hopf algebras

We will later in the course discuss the representation theory of a quantum group Uq(sl2) (for q
not a root of unity). We will explicitly find all irreducible representations, and then the task is to
verify complete reducibility.

It is fortunate that to verify semisimplicity of a Hopf algebra, it is sufficient to verify only a
particularly simple case. In this section we describe such a semisimplicity criterion for Hopf
algebras, which mimicks a standard algebraic proof of complete reducibility of semisimple Lie
algebras, and will be used forUq(sl2) later in the course.

Proposition 3.53
Suppose that A is a Hopf algebra for which the following criterion holds:

• Whenever R is an A-module and R0 ⊂ R is a submodule such that R/R0 is isomorphic to the
one-dimensional trivial A-module, then R0 has a complementary submodule P (which then
must be one-dimensional and trivial).

Then A is semisimple.
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Remark 3.54. Actually the criterion can be stated in a superficially weaker form: it suffices that
whenever R is an A-module and R0 ⊂ R is an irreducible submodule of codimension one such that
R/R0 is a trivial module, then there is a complementary submodule P to R0. Indeed, assuming this
weaker condition we can perform an induction on dimension to get to the general case. If R0 is
not irreducible, take a nontrivial irreducible submodule S0 ⊂ R0. Then consider the module R/S0
and its submodule R0/S0 of codimension one, which is trivial since (R/S0)/(R0/S0) � R/R0. The
dimensions of the modules in question are strictly smaller, so by induction we can assume that
there is a trivial complementary submodule Q/S0 of dimension one so that R/S0 = R0/S0 ⊕ Q/S0
(here Q ⊂ R is a submodule containing S0, and dim Q = dim S0 + 1). Now, since S0 is irreducible,
we can use the weak form of the criterion to write Q = S0 ⊕ P with P trivial one-dimensional
submodule of Q. One concludes that R = R0 ⊕ P.

In the proof of Proposition 3.53, we will consider the A-module of linear maps

Hom(V,W) : (a. f )(v) =
∑
(a)

a(1). f (γ(a(2)).v) for a ∈ A, v ∈ V, f ∈ Hom(V,W)

associated to two A-modules V and W. The subspace HomA(V,W) ⊂ Hom(V,W) of A-module
maps from V to W is

HomA(V,W) =
{
f : V →W linear | f (a.v) = a. f (v) for all v ∈ V, a ∈ A

}
.

Generally, for any A-module V, the trivial part VA of V is defined as

VA = {v ∈ V | a.v = ε(a) v for all a ∈ A} .

The trivial part of the A-module Hom(V,W) happens to consist precisely of the A-module maps.

Lemma 3.55
A map f ∈ Hom(V,W) is an A-module map if and only if a. f = ε(a) f for all a ∈ A. In other words,
we have HomA(V,W) = Hom(V,W)A.

Proof. Assuming that f is an A-module map we calculate

(a. f )(v) =
∑
(a)

a(1). f (γ(a(2).v)) =
∑
(a)

a(1)γ(a(2)). f (v) = ε(a) f (v),

which shows the “only if” part. To prove the “if” part, suppose that a. f = ε(a) f for all a ∈ A. Then
calculate

f (a.v) = f
(∑

(a)

ε(a(1))a(2).v
)

=
∑
(a)

ε(a(1)) f (a(2).v)

=
∑
(a)

(a(1). f )(a(2).v) =
∑
(a)

a(1). f
(
γ(a(2))a(3).v

)
=

∑
(a)

a(1). f (ε(a(2)) v) = a. f (v).

�

The observation that allows us to reduce general semisimplicity to the codimension one criterion
concerns the module Hom(V,W) in the particular case when W is a submodule of V. We are
searching for an A-linear projection to W.

Lemma 3.56
Let V be an A-module and W ⊂ V a submodule. Let

r : Hom(V,W)→ Hom(W,W)
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be the restriction map given by r( f ) = f |W for all f : V → W. Denote by R the subspace of maps
whose restriction is a multiple of the identity of W, that is

R = r−1(C idW).

Then we have

(a) Im (r|R) = C idW

(b) R ⊂ Hom(V,W) is a submodule

(c) Ker (r|R) ⊂ R is a submodule

(d) R/Ker (r|R) is a trivial one dimensional module.

Proof. The assertion (a) is obvious, since Im (r|R) ⊂ C idW by definition and the image of any
projection p : V → W is idW . It follows directly also that R/Ker (r|R) is a one-dimensional vector
space. All the rest of the properties are consequences of the following calculation: if f ∈ R so that
there is a λ ∈ C such that f (w) = λw for all w ∈W, then for any a ∈ A we have

(a. f )(w) =
∑
(a)

a(1). f
(
γ(a(2)).w

)
=

∑
(a)

a(1).
(
λ γ(a(2)).w

)
= λ

∑
(a)

a(1)γ(a(2)).w = λε(a) w.

Indeed, this directly implies (b): (a. f )|W = λε(a) idW . For (c), note that Ker (r) corresponds to the
case λ = 0, in which case also (a. f )|W = 0. For (d), rewrite the rightmost expression once more to
get (a. f )|W = ε(a) f |W and thus a. f = ε(a) f + g where g = a. f − ε(a) f and note that g|W = 0. �

We are now ready to give a proof of the semisimplicity criterion.

Proof of Proposition 3.53. Assume the property that all codimension one submodules with trivial
quotient modules have complements. We will establish semisimplicity by verifying property (iv)
of Proposition 3.18. Suppose therefore that V is a finite dimensional A-module and W ⊂ V is a
submodule. Consider R ⊂ Hom(V,W) consisting of those f : V → W for which the restriction
f |W to W is a multiple of identity, and R0 consisting of those f : V → W which are zero on W.
By the above lemma R0 ⊂ R ⊂ Hom(V,W) are submodules and R/R0 is the one dimensional
trivial A-module. By the assumption, then, R0 has a complementary submodule P, which is
one dimensional and trivial. Choose a non-zero π ∈ P normalized so that π|W = 1 idW . Then
π : V →W is a projection to W. Since P is a trivial module, we have a.π = ε(a)π, so by Lemma 3.55
the projection π : V → W is an A-module map. Thus property (iv) of Proposition 3.18 holds, and
by the same Proposition, A is semisimple. �
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Chapter 4

Quantum groups

4.1 A building block of quantum groups

This section discusses a Hopf algebra Hq, which is an important building block of quantum groups
— a kind of “quantum” version of a Borel subalgebra of the Lie algebra sl2.

q-integers, q-factorials and q-binomial coefficients

For n ∈N and 0 ≤ k ≤ n, define the following rational (in fact polynomial) functions of q:

the q-integer ~n� = 1 + q + q2 + · · · + qn−1 =
1 − qn

1 − q
(4.1)

the q-factorial ~n�! = ~1� ~2� · · · ~n − 1� ~n� (4.2)

the q-binomial coefficient
�

n
k

�
=

~n�!
~k�! ~n − k�!

, (4.3)

and when q ∈ C \ {0}, denote the values of these functions at q by

~n�q, ~n�q!,
�

n
k

�
q
,

respectively.

When q = 1, one recovers the usual integers, factorials and binomial coefficients.

As simple special cases one has

~0� = 0, ~1� = 1 and ~0�! = ~1�! = 1

and for all n ∈N�
n
0

�
=

�
n
n

�
= 1 and

�
n
1

�
=

�
n

n − 1

�
= ~n�.

The following exercise shows that the q-binomial coefficients are indeed analoguous to the ordinary
binomial coefficients in a particular noncommutative setting.

Exercise 29 (The q-binomial formula)
Suppose A is an algebra and a, b ∈ A are two elements which satisfy the relation

a b = q b a

for some q ∈ C \ {0}.
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(a) Show that for any n ∈Nwe have

(a + b)n =

n∑
k=0

�
n
k

�
q

bn−k ak.

(b) If q = ei2π/n, show that (a + b)n = an + bn.

When q is a root of unity, degeneracies arise. Let p be the smallest positive integer such that qp = 1.
Then we have

~mp�q = 0 ∀m ∈N and ~n�q! = 0 ∀n ≥ p.

The values of the q-binomial coefficients at roots of unity are described in the following exercise.

Exercise 30 (The q-binomial coefficients at roots of unity)
Let q ∈ C be a primitive pth root of unity, that is, qp = 1 and q, q2, q3, . . . , qp−1 , 1. Show that the
values of the q-binomial coefficients are then described as follows: if the quotients and remainders
modulo p of n and k are n = p D(n) + R(n) and k = p D(k) + R(k) with D(n),D(k) ∈ N and
R(n),R(k) ∈

{
0, 1, 2, . . . , p − 1

}
, then�

n
k

�
q

=

(
D(n)
D(k)

)
×

�
R(n)
R(k)

�
q
.

In particular
�

n
k

�
q

is non-zero only if the remainders satisfy R(k) ≤ R(n).

The Hopf algebra Hq

Let q ∈ C \ {0} and let Hq be the algebra with three generators a, a′, b and relations

a a′ = a′ a = 1 , a b = q b a.

Because of the first relation we can write a′ = a−1 in Hq. The collection (bm an)m∈N,n∈Z is a vector
space basis for Hq. The product in this basis is easily seen to be

µ(bm1 an1 ⊗ bm2 an2 ) = qn1m2 bm1+m2 an1+n2 .

Exercise 31 (The Hopf algebra structure of Hq)
Show that there is a unique Hopf algebra structure on Hq such that the coproducts of a and b are
given by

∆(a) = a ⊗ a and ∆(b) = a ⊗ b + b ⊗ 1.

Show also that the following formulas hold in this Hopf algebra

∆(bman) =

m∑
k=0

�
m
k

�
q

bkam−k+n
⊗ bm−kan (4.4)

ε(bman) = δm,0 (4.5)

γ(bman) = (−1)m q−m(m+1)/2−nm bm a−n−m. (4.6)

We will assume from here on that q , 1. Then the Hopf algebra Hq is clearly neither commutative
nor cocommutative. In fact, Hq also serves as an example of a Hopf algebra where the antipode is
not involutive: we have for example

γ(γ(b)) = −q−1 γ(ba−1) = q−1 b , b.
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About the restricted dual of Hq

Let us now consider the restricted dual H◦q . By Corollary 3.50, it is spanned by the representative
forms of finite dimensional Hq-modules, so let us start concretely from low-dimensional modules.
In particular, Exercise 24 tells us that one-dimensional representations of Hq correspond precisely
to grouplike elements of H◦q .

One-dimensional representations of Hq

Suppose V = C v is a one-dimensional Hq module with basis vector v. We have

a.v = z v

for some complex number z, which must be non-zero since a ∈ Hq is invertible. Note that

a.(b.v) = q b.(a.v) = qz b.v, (4.7)

which means that b.v is an eigenvector of a with a different eigenvalue, qz , z. Eigenvectors
corresponding to different eigenvalues would be linearly independent, so in the one dimensional
module we must have b.v = 0. It is now straighforward to compute the action of bman,

bman.v = δm,0 zn v,

from which we can read the only representative form λ1,1 ∈ H◦q in this case. We define gz ∈ H◦q as
that representative form

〈gz, bman
〉 = δm,0 zn.

By Exercise 24, the one-dimensional representations correspond to grouplike elements of H◦q , and
indeed it is easy to verify by direct computation or as a special case of Equation (3.9) that

µ∗(gz) = gz ⊗ gz.

To compute the products of two elements of this type, we use Equation (4.4):

〈∆∗(gz ⊗ gw), bman
〉 = 〈gz ⊗ gw,∆(bman)〉 =

m∑
k=0

�
m
k

�
q
〈gz, bkam−k+n

〉 〈gw, bm−kan
〉

=

m∑
k=0

�
m
k

�
q
δk,0 δm−k,0 zm−k+n wn = δm,0 (zw)n = 〈gzw, bman

〉,

that is, the product in H◦q of these elements reads

∆∗(gz ⊗ gw) = gzw.

We see that the linear span of (gz)z∈C\{0} in H◦q is isomorphic to the group algebra of the multiplicative
group of non-zero complex numbers C[C \ {0}].

We also remark that there is the trivial one-dimensional representation, explicitly determined by
Equation (4.5),

bman.v = ε(bman) v = δm,0 v = 〈g1, bman
〉 v,

and the corresponding grouplike element of the restricted dual is the unit of the restricted dual
Hopf algebra, 1H◦q = ε∗(1) = g1.

Two-dimensional representations of Hq

Let V be a two-dimensional Hq-module, and choose a basis v1, v2 in which a is in Jordan canonical
form. Let z1, z2 ∈ C\{0} be the (different or equal) eigenvalues of a. Recall that if v is an eigenvector
of a of eigenvalue z, then either b.v = 0 or b.v is a nonzero eigenvector of a with eigenvalue qz,
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as we saw in Equation (4.7). We continue to assume q , 0 and q , 1, but let us also assume that
q , −1, so that b has to annihilate at least one eigenvector of a and let us without loss of generality
suppose that

a.v1 = z1 v1 and b.v1 = 0.

There are a few possible cases. Either a is diagonalizable or there is a size two Jordan block of a (in
the latter case the eigenvalues of a must coincide), and either b.v2 = 0 or b.v2 is a nonzero multiple
of v1 (in which case we must have z1 = qz2 , z2 by the above argument).

Consider first the case when a is diagonalizable and b.v2 = 0. Then a.v2 = z2 v2 and we easily
compute

bman.v1 = δm,0 zn
1 v1 and bman.v2 = δm,0 zn

2 v2.

We read that the representative forms are of the same type as before,

λ1,1 = gz1 , λ2,1 = 0, λ1,2 = 0, λ2,2 = gz2 .

Consider then the case when a is not diagonalizable. We may assume a normalization of the basis
vectors such that a.v1 = z1 v1 and a.v2 = z1 v2 + v1. We observe that

(a − z1)2.v2 = 0 and therefore

(a − qz1)2b.v2 = b(qa − qz1)2.v2 = q2 b(a − z1)2.v2 = 0.

Thus b.v2 would have a generalized eigenvalue qz1, which is impossible, so we must have b.v2 = 0,
too. It is now easy to compute the action of the whole algebra on the module,

bman.v1 = δm,0 zn
1 v1 and bman.v2 = δm,0

(
zn

1 v2 + n zn−1
1 v1

)
.

Here we find one new representative form: define g′z ∈ H◦q , for z ∈ C \ {0}, by

〈g′z, b
man
〉 = δm,0 n zn−1.

Then the representative forms are

λ1,1 = gz1 , λ2,1 = 0, λ1,2 = g′z1
, λ2,2 = gz1 .

The coproduct in H◦q of the newly found element can be read from Equation (3.9), with the result

µ∗(g′z) = gz ⊗ g′z + g′z ⊗ gz.

This could of course also be verified by the following direct calculation

〈µ∗(g′z), bm1 an1 ⊗ bm2 an2〉 = 〈g′z, b
m1 an1 bm2 an2〉 = qn1m2 〈g′z, b

m1+m2 an1+n2〉

= qn1m2 δm1+m2,0 (n1 + n2) zn1+n2−1

= q0 δm1,0 δm2,0

(
n1 zn1−1 zn2 + zn1 n2 zn2−1

)
= 〈g′z ⊗ gz + gz ⊗ g′z, b

m1 an1 ⊗ bm2 an2〉.

Consider finally the case when a is diagonalizable and b.v2 is a nonzero multiple of v1. This
requires z1 = qz2, and we may assume a normalization of the basis vectors such that

a.v1 = qz2 v1, a.v2 = z2 v2, b.v1 = 0, b.v2 = v1.

We then have

bman.v1 = δm,0 (qz2)n v1 and bman.v2 = δm,0 zn
2 v2 + δm,1 zn

2 v1,

so we find one new representative form again. Defining h(1)
z ∈ H◦q , for z ∈ C \ {0}, by

〈h(1)
z , b

man
〉 = δm,1 zn,
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the representative forms in this case read

λ1,1 = gqz2 , λ2,1 = 0, λ1,2 = h(1)
z2
, λ2,2 = gz2 .

From Equation (3.9) we get the coproduct

µ∗(h(1)
z ) = gqz ⊗ h(1)

z + h(1)
z ⊗ gz. (4.8)

Since H◦q is also a Hopf algebra, we would want to know also products of the newly found

elements. We will only make explicit the subalgebra generated by h(1)
z , leaving it as an exercise to

compute the products for elements g′z. It will turn out useful to define for any k ∈N and z ∈ C\ {0}
the elements h(k)

z of the dual by
〈h(k)

z , b
man
〉 = δm,k zn,

of which we have considered the special cases h(1)
z and h(0)

z = gz. The products are calculated as
follows, using Equation (4.4),

〈∆∗(h(k)
z ⊗ h(l)

w ), bman
〉 = 〈h(k)

z ⊗ h(l)
w ,∆(bman)〉 =

m∑
j=0

�
m
j

�
q
〈h(k)

z , b
jam− j+n

〉 〈h(l)
w , b

m− jan
〉

=

m∑
j=0

�
m
j

�
q
δ j,k zm− j+n δm− j,l wn =

�
k + l

k

�
q

zl+n wn δm,k+l

= zl
�

k + l
k

�
q
〈h(k+l)

zw , bman
〉,

with the result

h(k)
z h(l)

w = zl
�

k + l
k

�
q

h(k+l)
zw . (4.9)

The restricted dual of Hq contains a copy of Hq

Having done the calculations with one and two dimensional Hq-modules, we are ready to show
that the Hopf algebra H◦q contains a copy of Hq when q is not a root of unity.

Lemma 4.1
Let q ∈ C \ {0} be such that qN , 1 for all N ∈ Z \ {0}. Then the algebra Hq can be embedded to its
restricted dual by the linear map such that bman

7→ b̃mãn, where

ã = gq and b̃ = h(1)
1 .

This embedding is an injective homomorphism of Hopf algebras.

Proof. First, ã is grouplike and thus invertible. Second, one sees from Equation (4.9) that

ãb̃ = q h(1)
q = q b̃ã,

which shows that the needed relations are satisfied, and the given embedding is an algebra
homomorphism. Denote by 1̃ = ε∗(1) = g1 the unit of the restricted dual Hopf algebra. From
Equation (4.8) we also read that

µ∗(b̃) = ã ⊗ b̃ + b̃ ⊗ 1̃,

and by the computations in Exercise 31 the values of the coproduct µ∗, the counit η∗ and the
antipode γ∗ on the elements b̃mãn are uniquely determined by these conditions. Finally, the images
of the basis elements bman can be computed using Equation (4.9) with the result

b̃mãn = ~m�q! h(m)
qn .

These are non-zero and linearly independent elements of the dual when q is not a root of unity, so
the embedding is indeed injective. �
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4.2 Braided bialgebras and braided Hopf algebras

In this section we discuss the braiding structure that is characteristic of quantum groups in addition
to just Hopf algebra structure.

Recall that if A is a bialgebra, then we’re able to equip tensor products of A-modules with an
A-module structure, and the one dimensional vector space Cwith a trivial module structure. The
coalgebra axioms guarantee in addition that the canonical vector space isomorphisms

(V1 ⊗ V2) ⊗ V3 � V1 ⊗ (V2 ⊗ V3)

and
V ⊗ C � V � C ⊗ V

become isomorphisms of A-modules. If A is cocommutative, ∆op = ∆, and if V and W are
A-modules, then also the tensor flip

SV,W : V ⊗W →W ⊗ V

becomes an isomorphism of A-modules. The property “braided” is a generalization of “cocom-
mutative”: we will not require equality of the coproduct and opposite coproduct, but only ask
the two to be related by conjugation, and we will be able to keep weakened forms of some of
the good properties of cocommutative bialgebras — in particular we obtain natural A-module
isomorphisms

cV,W : V ⊗W →W ⊗ V

that “braid” the tensor components.

The braid groups

Let us start by discussing what braiding usually means.

Definition 4.2. For n a positive integer, the braid group on n strands is the group Bn with
generators σ1, σ2 . . . , σn−1 and relations

σ j σ j+1 σ j = σ j+1 σ j σ j+1 for 1 ≤ j < n (4.10)
σ j σk = σk σ j for | j − k| > 1. (4.11)

To see why this is called braiding, we visualize the elements as operations on n vertical strands,
which we draw next to each other from bottom to top

.

The operations are continuation of the strands from the top, the generators and their inverses
being visualized as follows

σ j = and σ−1
j = .

Having visualized the generators in this way, the equations σ−1
j σ j = e = σ j σ−1

j tell us to identify
the following kinds of pictures

= = .
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The braid group relations tell us to identify pictures for example as shown below

(4.10)
= and

(4.11)
= .

Remark 4.3. In the symmetric group Sn, the transpositions of consequtive elements satisfy the
relations (4.10) and (4.11). Such transpositions generate Sn, so there exists a surjective group
homomorphism Bn → Sn such that σ j 7→ ( j j + 1). In other words, the symmetric group is
isomorphic to a quotient of the braid group. In this quotient one only keeps track of the endpoints
of the strands (permutation), forgetting about their possible entanglement (braid). The kernel of
this group homomorphism is a normal subgroup of Bn called the pure braid group: its elements
do not permute the order of the strands from bottom to top, but the strands can be entangled with
each other.

The Yang-Baxter equation

A collection of complex numbers (rk,l
i, j)i, j,k,l∈{1,2,...,d} is said to satisfy the Yang-Baxter equation if

d∑
a,b,c=1

rl,m
a,b rb,n

c,k ra,c
i, j =

d∑
a,b,c=1

rm,n
a,b rl,a

i,c rc,b
j,k for all i, j, k, l,m,n ∈ {1, 2, . . . , d} . (4.12)

Observe that there are d6 equations imposed on d4 complex numbers.

Let V be a vector space with basis (vi)d
i=1 and define

Ř : V ⊗ V → V ⊗ V by Ř(vi ⊗ v j) =

d∑
k,l=1

rk,l
i, j vk ⊗ vl.

Then the Yang-Baxter equation is equivalent with

Ř12 ◦ Ř23 ◦ Ř12 = Ř23 ◦ Ř12 ◦ Ř23, (YBE)

where Ř12, Ř23 : V ⊗ V ⊗ V → V ⊗ V ⊗ V are defined as Ř12 = Ř ⊗ idV and Ř23 = idV ⊗ Ř. This
equation has obvious resemblance with the braid group relation (4.10).

Example 4.4. If we set Ř(vi⊗v j) = vi⊗v j for all i, j ∈ {1, 2, . . . , d}, that is rk,l
i, j = δi,kδ j,l and Ř = idV⊗V,

then Ř satisfies the Yang-Baxter equation since both sides of Equation (YBE) become idV⊗V⊗V.

Example 4.5. If we set Ř(vi ⊗ v j) = v j ⊗ vi for all i, j ∈ {1, 2, . . . , d}, that is rk,l
i, j = δi,lδ j,k and Ř = SV,V,

then Ř satisfies the Yang-Baxter equation, as is verified by the following calculation on simple
tensors

vi ⊗ v j ⊗ vk
SV,V⊗idV
7→ v j ⊗ vi ⊗ vk

idV⊗SV,V
7→ v j ⊗ vk ⊗ vi

SV,V⊗idV
7→ vk ⊗ v j ⊗ vi

vi ⊗ v j ⊗ vk
idV⊗SV,V
7→ vi ⊗ vk ⊗ v j

SV,V⊗idV
7→ vk ⊗ vi ⊗ v j

idV⊗SV,V
7→ vk ⊗ v j ⊗ vi.

Exercise 32 (A solution to the Yang-Baxter equation)
Let V be a vector space with basis v1, v2, . . . , vd and let q ∈ C \ {0}. Define a linear map

Ř : V ⊗ V → V ⊗ V by Ř(vi ⊗ v j) =


q vi ⊗ v j if i = j
v j ⊗ vi if i < j
v j ⊗ vi +

(
q − q−1

)
vi ⊗ v j if i > j

.
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(a) Verify that we have the following equality of linear maps V ⊗ V ⊗ V → V ⊗ V ⊗ V

Ř12 ◦ Ř23 ◦ Ř12 = Ř23 ◦ Ř12 ◦ Ř23. (YBE)

(b) Verify also that

(Ř − q idV⊗V) ◦ (Ř + q−1 idV⊗V) = 0.

The notations Ř12 = Ř ⊗ idV and Ř23 = idV ⊗ Ř are a special case of acting on chosen tensor
components. More generally, if T : V ⊗ V → V ⊗ V is a linear map, then on

V⊗n = V ⊗ V ⊗ · · · ⊗ V︸             ︷︷             ︸
n times

we define Ti j, 1 ≤ i, j ≤ n, i , j, as the linear map that acts as T on the ith and jth tensor components
and as identity on the rest. Explicitly, if

T(vk ⊗ vk′ ) =

d∑
l,l′=1

tl,l′

k,k′ vl ⊗ vl′ ,

then (assuming i < j for definiteness)

Ti j(vk1 ⊗ · · · ⊗ vkn ) =

d∑
l,l′=1

tl,l′

ki,k j
vk1 ⊗ · · · ⊗ vki−1 ⊗ vl ⊗ vki+1 ⊗ · · · ⊗ vk j−1 ⊗ vl′ ⊗ vk j+1 ⊗ · · · ⊗ vkn .

Exercise 33 (Two ways of writing the Yang-Baxter equation)
Let V be a vector space, and let R and Ř be linear maps V ⊗ V → V ⊗ V related by

Ř = SV,V ◦ R.

Show that the following equalities of linear maps V ⊗ V ⊗ V → V ⊗ V ⊗ V are equivalent

(i) Ř12 ◦ Ř23 ◦ Ř12 = Ř23 ◦ Ř12 ◦ Ř23

(ii) R12 ◦ R13 ◦ R23 = R23 ◦ R13 ◦ R12. (YBE’)

Note that here we could have taken the following as definitions

R12 = R ⊗ idV

R23 = idV ⊗ R
R13 = (idV ⊗ SV,V) ◦ (R ⊗ idV) ◦ (idV ⊗ SV,V).

Proposition 4.6
If Ř : V ⊗ V → V ⊗ V is bijective and satisfies the Yang-Baxter equation (YBE), then on V⊗n

there is a representation ρ : Bn → Aut(V⊗n) of the braid group Bn, such that ρ(σ j) = Ř j j+1 for all
j = 1, 2, . . . ,n − 1.

Proof. First, if Ř is bijective, then clearly Ř j j+1 ∈ Aut(V⊗n) for all j. To show existence of a group
homomorphism ρwith the given values on the generators σ j, we need to verify the relations (4.10)
and (4.11) for the images Ř j j+1. The first relation follows from the Yang-Baxter equation (YBE),
and the second is obvious since when | j − k| > 1, the matrix Ř j j+1 acts as identity on the tensor
components k and k + 1, and vice versa. �
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Universal R-matrix and braided bialgebras

The universal R-matrix is an algebra element, which in representations becomes a solution to
the Yang-Baxter equation. Let A be an algebra (in what follows always in fact a bialgebra or a
Hopf algebra), and equip A ⊗ A and A ⊗ A ⊗ A as usually with the algebra structures given by
componentwise products, for example (a⊗ a′) (b⊗ b′) = ab⊗ a′b′ for all a, a′, b, b′ ∈ A. Suppose that
we have an element R ∈ A ⊗ A, which we write as a sum of elementary tensors

R =

r∑
i=1

si ⊗ ti,

with some si, ti ∈ A, i = 1, 2, . . . , r. Then we use the notations

R12 =
∑

i

si ⊗ ti ⊗ 1A R13 =
∑

i

si ⊗ 1A ⊗ ti R23 =
∑

i

1A ⊗ si ⊗ ti.

Definition 4.7. Let A be a bialgebra (or a Hopf algebra). An element R ∈ A ⊗ A is called a
universal R-matrix for A if

(R0) R is invertible in the algebra A ⊗ A

(R1) for all x ∈ A we have ∆op(x) = R ∆(x) R−1

(R2) (∆ ⊗ idA)(R) = R13 R23

(R3) (idA ⊗ ∆)(R) = R13 R12.

A pair (A,R) as above is called a braided bialgebra (or braided Hopf algebra, if A is a Hopf algebra).

Instead of the terms “braided bialgebra” or “braided Hopf algebra”, Drinfeld originally used
the terms “quasitriangular bialgebra” and “quasitriangular Hopf algebra”. That is why one
occasionally encounters these terms in the literature.

Example 4.8. If A is a commutative bialgebra, ∆ = ∆op, then R = 1A ⊗ 1A is a universal R-matrix.
Thus braided bialgebras generalize cocommutative bialgebras.

Exercise 34 (Coproducts commute with a full twist)
Show that R21 R ∆(x) = ∆(x) R21 R for all x ∈ A.

Exercise 35 (A universal R-matrix for the Hopf algebra of cyclic group)
Let A = C[Z/NZ] be the group algebra of the cyclic group of order N, generated by one element
θ such that θN = 1A. Denote also ω = exp(2πi/N). Show that the element

R =
1
N

N−1∑
k,l=0

ωkl θk
⊗ θl

is a universal R-matrix for A.
Hint: To find the inverse element, Exercise 37 may help.

Exercise 36 (Another universal R-matrix)
Show that if R is a universal R-matrix for a bialgebra A, then R−1

21 = SA,A(R−1) is also a universal
R-matrix for A.

A few properties of braided bialgebras are listed in the following.

65



Hopf algebras and representations Spring 2011

Proposition 4.9
Let (A,R) be a braided bialgebra. Then we have

• (ε ⊗ idA)(R) = 1A and (idA ⊗ ε)(R) = 1A

• R12 R13 R23 = R23 R13 R12.

Proof. To prove the second property, write

R12 R13 R23
(R2)
= R12 (∆ ⊗ idA)(R)

(R1)
= (∆op

⊗ idA)(R) R12

=
(
(SA,A ⊗ idA) ◦ (∆ ⊗ idA)(R)

)
R12

(R2)
=

(
(SA,A ⊗ idA)(R13R23)

)
R12

= R23 R13 R12.

To prove the first formula of the first property, we use two different ways to rewrite the expression

(ε ⊗ idA ⊗ idA) ◦ (∆ ⊗ idA)(R). (4.13)

On the one hand, we could simply use (ε ⊗ id) ◦ ∆ = id to write (4.13) as R. On the other hand, if
we denote r = (ε ⊗ idB)(R) ∈ A and use property (R2) of R-matrices, we get

(4.13)
(R2)
= (ε ⊗ idA ⊗ idA)(R13R23) = (1A ⊗ r) R.

The equality of the two simplified expressions, R = (1A ⊗ r)R, implies 1A ⊗ r = 1A ⊗ 1A since R is
invertible, and therefore we get r = 1A as claimed.

The case of (idA ⊗ ε)(R) is handled similarly by considering the expression (id⊗ id⊗ ε)◦ (id⊗∆)(R)
instead of (4.13). �

The promised braiding isomorphism of tensor product representations in two different orders
goes as follows. Let A be a braided bialgebra (or braided Hopf algebra) with universal R-
matrix R ∈ A ⊗ A, and suppose that V and W are two A-modules, with ρV : A → End(V) and
ρW : A→ End(W) the respective representations. Recall that the vector spaces V ⊗W and W ⊗ V
are equipped with the representations of A given by ρV⊗W = (ρV⊗ρW)◦∆ and ρW⊗V = (ρW⊗ρV)◦∆.

Proposition 4.10
Let A be a braided bialgebra with universal R-matrix R ∈ A⊗A. The linear map cV,W : V⊗W →W⊗V
defined by

cV,W = SV,W ◦
(
(ρV ⊗ ρW)(R)

)
is an isomorphism of A-modules. The collection (cV,W)V,W A-modules of isomorphisms of A-modules
is natural in the sense that if f : V → V′ and g : W →W′ are A-module maps, then we have

cV′,W′ ◦ ( f ⊗ g) = (g ⊗ f ) ◦ cV,W as maps V ⊗W →W′
⊗ V′.

Proof. The map (ρV ⊗ ρW)(R) : V ⊗W → V ⊗W is bijective, with inverse (ρV ⊗ ρW)(R−1). Since
SV,W : V ⊗W → W ⊗ V is obviously also bijective, the map cV,W is indeed a bijective linear map.
We must only show that it respects the A-module structures. Let x ∈ A and compute

cV,W ◦ ρV⊗W(x) = SV,W ◦
(
(ρV ⊗ ρW)(R)

)
◦

(
(ρV ⊗ ρW)(∆(x))

)
= SV,W ◦

(
(ρV ⊗ ρW)(R∆(x))

)
(R1)
= SV,W ◦

(
(ρV ⊗ ρW)(∆op(x)R)

)
= SV,W ◦

(
(ρV ⊗ ρW)(∆op(x))

)
◦

(
(ρV ⊗ ρW)(R)

)
=

(
(ρW ⊗ ρV)(∆(x))

)
◦ SV,W ◦

(
(ρV ⊗ ρW)(R)

)
= ρW⊗V(x) ◦ cV,W .
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This shows that the action by x in the different modules is preserved by cV,W .

The naturality follows from an obvious calculation, which just uses the A-linearity of f : V → V′

and g : W →W′. Write the universal R-matrix as R =
∑

i si ⊗ ti ∈ A ⊗A. Let v ∈ V and w ∈W, and
calculate(

cV′,W′ ◦ ( f ⊗ g)
)
(v ⊗ w) = cV′,W′

(
( f (v) ⊗ g(w)

)
= SV′,W′

(∑
i

si. f (v) ⊗ ti.g(w)
)

= SV′,W′

(∑
i

f (si.v) ⊗ g(ti.w)
)

=
(
SV′,W′ ◦ ( f ⊗ g)

)(∑
i

(si.v) ⊗ (ti.w)
)

=
(
(g ⊗ f ) ◦ SV,W

)(∑
i

(si.v) ⊗ (ti.w)
)

=
(
(g ⊗ f ) ◦ cV,W

)
(v ⊗ w).

�

We next show that braiding with the trivial representation does nothing, and that the braiding
respects tensor products: one can braid the the components of a tensor product one at a time in
the following sense.

Lemma 4.11
Let U, V, W be three representations of a braided bialgebra A. Then we have

(i) cC⊗V = idV and cV⊗C = idV as maps V → V
(ii) cU⊗V,W = (cU,W ⊗ idV) ◦ (idU ⊗ cV,W) as a map U ⊗ V ⊗W →W ⊗U ⊗ V
(iii) cU,V⊗W = (idV ⊗ cU,W) ◦ (cU,V ⊗ idW) as a map U ⊗ V ⊗W → V ⊗W ⊗U.

Proof. The claims in (i) are of course with identifications C ⊗ V � V and V ⊗ C � V. With the
universal R-matrix written as R =

∑
i si ⊗ ti ∈ A ⊗ A, and with v ∈ V we calculate for example

cC⊗V(1 ⊗ v) = SC,V
(∑

i

(si.1) ⊗ (ti.v)
)

= SC,V
(∑

i

ε(si) ⊗ (ti.v)
)

With the identification C ⊗ V � V the last expression is∑
i

ε(si) ti.v.

Using the first part of Proposition 4.9, this is finally just 1A.v, that is v. The other claim in (i) is
similar.

Assertions (ii) and (iii) are direct consequences of the axioms (R2) and (R3), respectively. Consider
for example the assertion (iii). Let u ∈ U, v ∈ V, w ∈W. We have

cU,V⊗W(u ⊗ v ⊗ w) = SU,V⊗W

(∑
i

(
si.u

)
⊗

(
ti.(v ⊗ w)

))
=

∑
i

(
ti.(v ⊗ w)

)
⊗

(
si.u

)
=

∑
i

(∑
(ti)

((ti)(1).v ⊗ (ti)(2).w)
)
⊗

(
si.u

)
Recall property (R3), which we write in the following form∑

i

∑
(ti)

si ⊗ (ti)(1) ⊗ (ti)(2) = (idA ⊗ ∆)(R)
(R3)
= R13 R12 =

∑
j,k

s jsk ⊗ tk ⊗ t j.
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With this formula we continue the calculation of the braiding of U with V ⊗W, and we get

cU,V⊗W(u ⊗ v ⊗ w) =
∑

j,k

(tk.v) ⊗ (t j.w) ⊗ (s jsk.u)

=
∑

k

(tk.v) ⊗
(
cU,W(sk.u ⊗ w)

)
= (idV ⊗ cU,W)

(∑
k

(tk.v) ⊗ (sk.u) ⊗ w
)

=
(
(idV ⊗ cU,W) ◦ (cU,V ⊗ idW)

)(
v ⊗ u ⊗ w

)
.

The proof of assertion (ii) is entirely parallel, using the axiom (R2) instead. �

Note that the last property in Proposition 4.9 above is like the Yang-Baxter equation (YBE’), but
for algebra elements. When acting on representations, all components need not be the same, so
we get a slight generalization of the Yang-Baxter equation.

Proposition 4.12
Let U, V, W be three representations of a braided bialgebra A. Then we have

(cV,W ⊗ idU) ◦ (idV ⊗ cU,W) ◦ (cU,V ⊗ idW) = (idW ⊗ cU,V) ◦ (cU,W ⊗ idV) ◦ (idU ⊗ cV,W)

as linear maps
U ⊗ V ⊗W →W ⊗ V ⊗U.

Proof. Just like the above algebra version of the Yang-Baxter equation, this follows from Lemma 4.11.
We first reckognize on the left hand side a piece which can be simplified with the property (i) of
the lemma. Then we use the naturality of the braiding, with g = cV,W and f = idU and finally
again the property (i). The calculation thus reads

(cV,W ⊗ idU) ◦ (idV ⊗ cU,W) ◦ (cU,V ⊗ idW) = (cV,W ⊗ idU) ◦ cU,V⊗W

= cU,W⊗V ◦ (idU ⊗ cV,W)
= (idW ⊗ cU,V) ◦ (cU,W ⊗ idV) ◦ (idU ⊗ cV,W).

�

Suppose that ρV : A→ End(V) is a representation of a braided bialgebra A. The vector space V⊗n

is equipped with the representation of A

ρ = (ρV ⊗ ρV ⊗ · · · ⊗ ρV) ◦ ∆(n),

where ∆(n) denotes the n − 1-fold coproduct, defined (for example) as

∆(n) = (∆ ⊗ idA ⊗ · · · ⊗ idA) ◦ · · · ◦ (∆ ⊗ idA) ◦ ∆,

although by coassociativity we are allowed to write it in other ways if we wish.

In Proposition 4.12 taking also U = V and W = V, we get the Yang-Baxter equation. Combining
with Proposition 4.10, we have proved the following.

Theorem 4.13
Let A be a braided bialgebra (or a braided Hopf algebra) with universal R-matrix R ∈ A ⊗ A,
and let ρV : A → End(V) be a representation of A in a vector space V. Then the linear map
Ř : V ⊗ V → V ⊗ V given by

Ř = cV,V = SV,V ◦
(
(ρV ⊗ ρV)(R)

)
is a solution to the Yang-Baxter equation. Moreover, on the n-fold tensor product space V⊗n, the
braid group action defined by Ř as in Proposition 4.6 commutes with the action of A.
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Braided Hopf algebras

Let A = (A, µ,∆, η, ε, γ) be a Hopf algebra, and suppose that there exists a universal R-matrix
R ∈ A ⊗ A, i.e. that A can be made a braided Hopf algebra. We will now investigate some
implications that this has on the structure of the Hopf algebra and on the universal R-matrix.

Exercise 37 (Behavior of universal R-matrix under the antipode)
Show that for a braided Hopf algebra A we have

(γ ⊗ idA)(R) = R−1 and (γ ⊗ γ)(R) = R.

Hint: For the first statement, remember Proposition 4.9. For the second, Exercise 36 comes in
handy.

We can now prove a statement analogous to the property that in cocommutative Hopf algebras
the square of the antipode is the identity map. Here we obtain that the square of the antipode of
a braided Hopf algebra is an inner automorphism.

Theorem 4.14
Let A be a braided Hopf algebra with a universal R-matrix R =

∑
i si ⊗ ti. Then, for all x ∈ A we

have

γ(γ(x)) = u x u−1,

where u ∈ A is

u = µ ◦ (γ ⊗ idA) ◦ SA,A(R) =
∑

i

γ(ti)si.

We also have

γ−1(x) = u−1 γ(x) u.

Proof. We will first prove an auxiliary formula,
∑

(x) γ(x(2)) u x(1) = ε(x) u for all x ∈ A. To get this,
calculate

∑
(x)

γ(x(2)) u x(1) =
∑
(x)

∑
i

γ(x(2))γ(ti)six(1) =
∑
(x)

∑
i

γ(tix(2))six(1)

=
∑
(x)

∑
i

µ ◦ (γ ⊗ idA)
(
x(2)ti ⊗ six(1)

)
= µ ◦ (γ ⊗ idA) ◦ SA,A

(
R∆(x)

)
(R1)
= µ ◦ (γ ⊗ idA) ◦ SA,A

(
∆op(x)R

)
=

∑
(x)

∑
i

γ(x(1)ti)x(2)si =
∑
(x)

∑
i

γ(ti)γ(x(1))x(2)si

(H3)
= ε(x)

∑
i

γ(ti) 1A si = ε(x) u.

We will then show that γ(γ(x))u = ux. To do this, use the auxiliary formula for the first component
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”x(1)” of the coproduct of x ∈ A in the third equality below

γ(γ(x)) u
(H2′)
= γ(γ(

∑
(x)

ε(x(1)) x(2))) u

=
∑
(x)

γ(γ(x(2))) ε(x(1)) u

auxiliary
=

∑
(x)

γ(γ(x(3)))γ(x(2)) u x(1) (note that the sum represents a double coproduct)

=
∑
(x)

γ(x(2)γ(x(3))) u x(1) (note that the sum represents a double coproduct)

(H3)
=

∑
(x)

ε(x(2)) γ(1A) u x(1)

(H2′)
= γ(1A) u x = u x.

Now to prove the formula γ(γ(x)) = uxu−1 it suffices to show that u is invertible, since then we
can multiply the above equation from the right by u−1. We claim that the inverse of u is

ũ = µ ◦ (idA ⊗ γ
2) ◦ SA,A(R) =

∑
i

tiγ
2(si).

Let us calculate, using the property γ2(x)u = ux,

ũ u =
∑

i

ti γ
2(si) u =

∑
i

ti u si =
∑

i, j

ti γ(t j) s j si

Ex.37
=

∑
i, j

γ(ti)γ(t j) s j γ(si) =
∑

i, j

γ(t jti) s j γ(si)

= µop
◦ (idA ⊗ γ)

(∑
i, j

s jγ(si) ⊗ t jti

)
Ex.37
= µop

◦ (idA ⊗ γ)
(
R R−1

)
= γ(1A)1A = 1A.

Likewise,

u ũ =
∑

i

u ti γ
2(si) =

∑
i

γ2(ti) uγ2(si),

which by Exercise 37 equals
∑

i ti u si, and this expression was already computed above to be 1A.

We leave it as an exercise to derive the last statement from the first. �

Exercise 38 (Linear maps whose square is an inner automorphism)
Suppose that A is an algebra, u ∈ A is an invertible element, and G : A → A is a linear map such
that

G(G(x)) = u x u−1 for all x ∈ A.

(a) Show that G is bijective.

(b) Show that the inverse of G is given by the formula

G−1(x) = u−1 G(x) u for all x ∈ A.

(c) Finish the proof of Theorem 4.14 by showing that the second statement follows from the
first.
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In the following two exercises we explore some further properties of the element

u = µop
◦ (idA ⊗ γ)(R) =

∑
i

γ(ti)si ∈ A,

when the antipode γ is invertible.

Exercise 39 (A central element in braided Hopf algebras)
Let A be a braided Hopf algebra such that the antipode γ : A → A has an inverse γ−1 : A → A.
Show that γ(u)u is in the center of A, i.e. γ(u)ux = xγ(u)u for all x ∈ A, and that γ(u) u = uγ(u).

In the following exercise it’s good to recall also Exercise 34, and in part (b) one in fact needs almost
all the properties of the universal R-matrices that we have seen so far. We use the notation

R21 = SA,A(R) =
∑

i

ti ⊗ si.

Exercise 40 (Properties of the element u in braided Hopf algebras)
Let A be a braided Hopf algebra such that the antipode γ : A→ A has an inverse γ−1 : A→ A.

(a) Show that ε(u) = 1.

(b) Show that ∆(u) = (R21R)−1 (u ⊗ u).

(c) Show that uγ(u−1) is grouplike.

4.3 The Drinfeld double construction

There is a systematic way of creating braided Hopf algebras, the Drinfeld double construction.

Let us assume that A = (A, µ,∆, η, ε, γ) is a Hopf algebra such that γ has an inverse γ−1, and B ⊂ A◦

is a sub-Hopf algebra. We denote the unit of A simply by 1 = η(1), and the unit of A◦ (and thus
also of B) by 1∗. By definition, then, for any a ∈ A we have 〈1∗, a〉 = ε(a). For any ϕ ∈ B we use the
following notation for the coproduct

µ∗(ϕ) =
∑
(ϕ)

ϕ(1) ⊗ ϕ(2).

Theorem 4.15
Let A and B ⊂ A◦ be as above. Then the space A ⊗ B admits a unique Hopf algebra structure such
that:

(i) The map ιA : A→ A ⊗ B given by a 7→ a ⊗ 1∗ is a homomorphism of Hopf algebras.

(ii) The map ιB : Bcop
→ A ⊗ B given by ϕ 7→ 1 ⊗ ϕ is a homomorphism of Hopf algebras.

(iii) For all a ∈ A, ϕ ∈ B we have
(a ⊗ 1∗) (1 ⊗ ϕ) = a ⊗ ϕ.

(iv) For all a ∈ A, ϕ ∈ B we have

(1 ⊗ ϕ) (a ⊗ 1∗) =
∑
(a)

∑
(ϕ)

〈ϕ(1), a(3)〉 〈ϕ(3), γ
−1(a(1))〉 a(2) ⊗ ϕ(2).

This Hopf algebra is denoted by D(A,B) and it is called the Drinfeld double associated to A and
B.
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Example 4.16. When A is finite dimensional, A◦ = A∗ is a Hopf algebra. It can also be shown that
the antipode is always invertible in the finite dimensional case. The Drinfeld double associated to
A and A∗ is then denoted simply byD(A).

Example 4.17. When q is not a root of unity, we showed in Lemma 4.1 that the Hopf algebra Hq

can be embedded to its restricted dual by a map such that a 7→ ã, b 7→ b̃. In Section 4.4 we will
consider in detail the Drinfeld double associated to the Hopf algebra Hq and the sub-Hopf algebra
of H◦q which is isomorphic to Hq.

Proof of uniqueness in Theorem 4.15. When one claims that something exists and is uniquely deter-
mined by some given properties, it is often convenient to start with a proof of uniqueness, in the
course of which one obtains explicit formulas that help proving existence. This is what we will do
now. Denote the structural maps ofD(A,B) by µD, ∆D, ηD, εD and γD, in order to avoid confusion
with the structural maps of A (and of A◦).

In order to prove that the product µD is uniquely determined by the conditions, it suffices to
compute its values on simple tensors. So let a, b ∈ A, ϕ,ψ ∈ B and use the propertiy (iii) to write
(a ⊗ ϕ) = (a ⊗ 1∗)(1 ⊗ ϕ) and (b ⊗ ψ) = (b ⊗ 1∗)(1 ⊗ ψ). Then calculate, assuming that µD is an
associative product,

(a ⊗ ϕ) (b ⊗ ψ) = (a ⊗ 1∗) (1 ⊗ ϕ) (b ⊗ 1∗) (1 ⊗ ψ)
(iv)
= (a ⊗ 1∗)

( ∑
(ϕ),(b)

〈ϕ(1), b(3)〉 〈ϕ(3) γ
−1(b(1))〉 b(2) ⊗ ϕ(2)

)
(1 ⊗ ψ)

(iii)
= (a ⊗ 1∗)

( ∑
(ϕ),(b)

〈ϕ(1), b(3)〉 〈ϕ(3), γ
−1(b(1))〉 (b(2) ⊗ 1∗) (1 ⊗ ϕ(2))

)
(1 ⊗ ψ)

(i) and (ii)
=

∑
(ϕ),(b)

〈ϕ(1), b(3)〉 〈ϕ(3), γ
−1(b(1))〉 (ab(2) ⊗ 1∗) (1 ⊗ ϕ(2)ψ).

By (iii) this simplifies to

(a ⊗ ϕ) (b ⊗ ψ) =
∑

(ϕ),(b)

〈ϕ(1), b(3)〉 〈ϕ(3), γ
−1(b(1))〉 ab(2) ⊗ ϕ(2)ψ, (4.14)

and we see that the product µD is indeed uniquely determined.

The unit in an associative algebra is always uniquely determined, and it is easy to check with the
product formula (4.14) that the unit of the Drinfeld double is

1D = ηD(1) = 1 ⊗ 1∗. (4.15)

The coproduct has to be a homomorphism of algebras. Thus using (iii): (a ⊗ ϕ) = (a ⊗ 1∗)(1 ⊗ ϕ) =
ιA(a) ιB(ϕ), and (i): ∆D(ιA(a)) =

∑
(a) ιA(a(1)) ⊗ ιA(a(2)) and (ii): ∆D(ιB(ϕ)) =

∑
(ϕ) ιB(ϕ(2)) ⊗ ιB(ϕ(1)) we

get

∆D(a ⊗ ϕ) =
∑

(a),(ϕ)

(a(1) ⊗ ϕ(2)) ⊗ (a(2) ⊗ ϕ(1)). (4.16)

The counit, too, has to be a homomorphism of algebras, so as above we easily get

εD(a ⊗ ϕ) = ε(a) 〈ϕ, 1〉. (4.17)

Finally, the antipode has to be a homomorphism of algebras from D(A,B) to D(A,B)op, so again
by (iii) we must have γD(a⊗ϕ) = γ(ιB(ϕ))γ(ιA(a)). From (i) we get the obvious γ(ιA(a)) = γ(a)⊗ 1∗.
Recall that the antipode of the co-opposite Hopf algebra is the inverse of the ordinary, and
that the antipode of the restricted dual is obtained by taking the transpose. Then (ii) gives
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γD(ιB(ϕ)) = 1 ⊗ (γ∗)−1(ϕ). Now using (iv) and the homomorphism properties of antipodes, and
properties of transpose, we get

γD(a ⊗ ϕ) =
∑

(a),(ϕ)

〈ϕ(1), γ
−1(a(3))〉 〈ϕ(3), a(1)〉 γ(a(2)) ⊗ (γ∗)−1(ϕ(2)). (4.18)

�

Before we turn to verifying the existence part of the proof, let us already show how the Drinfeld
double construction yields braided Hopf algebras. Assume here that A is a finite dimensional
Hopf algebra with basis (ei)d

i=1, and let (δi)d
i=1 denote the dual basis for A∗, so that

〈δi, e j〉 =

{
1 if i = j
0 if i , j .

We have already met the evaluation map A∗⊗A→ C given byϕ⊗a 7→ 〈ϕ, a〉. Let us now introduce
the coevaluation map coev : C → A ⊗ A∗, which under the identification A ⊗ A∗ � Hom(A,A)
corresponds to λ 7→ λ idA. We can write explicitly

coev(λ) = λ
d∑

i=1

ei ⊗ δ
i.

Below we will frequently use the formula

d∑
i=1

〈δi, b〉 ei = b,

valid for any b ∈ A. The combination of counitality with the defining property of the antipode is
repeatedly used abusing the notation for multiple coproducts, for example as∑

(b)

(
γ(b( j))b( j+1)

)
⊗ b(1) ⊗ · · · ⊗ b( j−1) ⊗ b( j+2) ⊗ · · · ⊗ b(n) =

∑
(b)

(
1A

)
⊗ b(1) ⊗ · · · ⊗ b(n−2),

and analoguously in other similar cases, also with γ−1 in the opposite or co-opposite cases.

Theorem 4.18
Let A be a finite dimensional Hopf algebra with invertible antipode, and let (ei)d

i=1 and (δi)d
i=1 be

dual bases of A and A∗. Then the Drinfeld doubleD(A) is a braided Hopf algebra with a universal
R-matrix

R = (ιA ⊗ ιA∗ )(coev(1)) =

d∑
i=1

(ei ⊗ 1∗) ⊗ (1 ⊗ δi).

Proof. Let us start by showing (R0), i.e. that R is invertible. The inverse is given by

R̄ =
∑

i

(γ(ei) ⊗ 1∗) ⊗ (1 ⊗ δi),

as Exercise 37 requires. We compute

R R̄ =
(∑

i

(ei ⊗ 1∗) ⊗ (1 ⊗ δi)
) (∑

j

(γ(e j) ⊗ 1∗) ⊗ (1 ⊗ δ j)
)

=
∑

i, j

(eiγ(e j) ⊗ 1∗) ⊗ (1 ⊗ δiδ j).
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We would like to show that this elements ofD(A) ⊗D(A) = A ⊗ A∗ ⊗ A ⊗ A∗ is the unit 1D ⊗ 1D =
1 ⊗ 1∗ ⊗ 1 ⊗ 1∗. Consider evaluating the expressions in A ⊗ A∗ ⊗ A ⊗ A∗ in the second and fourth
components at b ∈ A and c ∈ A. By the above calculation we see that R R̄ evaluates to∑

i, j

eiγ(e j) ⊗ 1 〈1∗, b〉 〈δiδ j, c〉 = ε(b)
∑

i, j

∑
(c)

eiγ(e j) ⊗ 1 〈δi, c(1)〉 〈δ
j, c(2)〉

= ε(b)
∑
(c)

c(1)γ(c(2)) ⊗ 1 = ε(b)ε(c) 1 ⊗ 1.

But the unit 1⊗ 1∗ ⊗ 1⊗ 1∗ would obviously have evaluated to the same value, so we conclude that
R̄ is a right inverse: R R̄ = 1 ⊗ 1∗ ⊗ 1 ⊗ 1∗. To show that R̄ is a left inverse is similar.

To prove property (R1), note that the set of elements that verifies the property

S =
{
x ∈ D(A) : ∆

op
D

(x) R = R ∆D(x)
}

is a subalgebra ofD: indeed the unit 1D = 1 ⊗ 1∗ has coproduct ∆D(1D) = 1D ⊗ 1D = ∆op(1D) so it
is clear that 1D ∈ S, and if x, y ∈ S, then

∆
op
D

(xy) R = ∆
op
D

(x) ∆
op
D

(y) R = ∆
op
D

(x) R ∆D(y) = R ∆D(x) ∆D(y) = R ∆D(xy).

By the defining formulas for the products in a Drinfeld double, elements of the form a ⊗ 1∗ and
1 ⊗ ϕ generateD(A) as an algebra, so it suffices to show that the property (R1) holds for elements
of these two forms.

Consider an element of the form a ⊗ 1∗. We only need the easy product formulas in the Drinfeld
double to compute

∆
op
D

(a ⊗ 1∗) R =
∑

i

∑
(a)

(
(a(2) ⊗ 1∗) (ei ⊗ 1∗)

)
⊗

(
(a(1) ⊗ 1∗) (1 ⊗ δi)

)
=

∑
i

∑
(a)

(
(a(2)ei ⊗ 1∗)

)
⊗

(
(a(1) ⊗ δ

i)
)
,

but for the other term we need the more general products

R ∆D(a ⊗ 1∗) =
∑

i

∑
(a)

(
(ei ⊗ 1∗) (a(1) ⊗ 1∗)

)
⊗

(
(1 ⊗ δi) (a(2) ⊗ 1∗)

)
=

∑
i

∑
(a)

(
eia(1) ⊗ 1∗

)
⊗

(∑
(δi)

〈
(δi)(3), γ

−1(a(2))
〉 〈

(δi)(1), a(4)

〉
a(3) ⊗ (δi)(2)

)
To show the equality of these two expressions inD⊗D � A ⊗A∗ ⊗A ⊗A∗, evaluate in the second
and fourth components on two elements b, c of A. The first expression evaluates to∑

i

∑
(a)

ε(b)
〈
δi, c

〉
a(2)ei ⊗ a(1) =

∑
(a)

ε(b) a(2)c ⊗ a(1)

and the second to∑
i

∑
(a)

∑
(δi)

ε(b)
〈
(δi)(2), c

〉 〈
(δi)(3), γ

−1(a(2))
〉 〈

(δi)(1), a(4)

〉
eia(1) ⊗ a(3)

= ε(b)
∑

i

∑
(a)

〈
δi, a(4) cγ−1(a(2))

〉
eia(1) ⊗ a(3)

= ε(b)
∑
(a)

a(4) cγ−1(a(2)) a(1) ⊗ a(3) (now use (H3) and (H2’) for Aop)

= ε(b)
∑
(a)

a(2) c ⊗ a(1),
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which is the same as the first. We conclude that for all a ∈ A the equality ∆op(a⊗ 1∗)R = R∆(a⊗ 1∗)
holds.

Showing that elements of the form 1 ⊗ ϕ satisfy the property is similar. We have then shown that
the set of elements S for which ∆op(x)R = R∆(x) holds is a subalgebra containing a generating
set of elements, so S = D(A). Since we have also shown that R is invertible, we now conclude
property (R1).

Properties (R2) and (R3) of the R-matrix are similar and they can be verified in the same way. We
leave this as an exercise. �

Exercise 41 (Properties (R2) and (R3) for the universal R-matrix of a Drinfeld double)
Finish the proof of Theorem 4.18 by verifying the properties (R2) and (R3) for R andD(A).

We should still verify that in the Drinfeld double construction the structural maps µD, ∆D, ηD,
εD and γD, given by formulas (4.14 – 4.18), satisfy the axioms (H1 – H6). This is mostly routine
and we will leave checking some of the axioms to the dedicated reader. In view of formulas (4.14
– 4.18) it is also clear that the embedding maps ιA : A → D(A,B) and ιB : Bcop

→ D(A,B) are
homomorphisms of Hopf algebras.

For checking the associativity property we still introduce a lemma. Note that the product (4.14)
can be written as

µD = (µ ⊗ ∆∗) ◦ (idA ⊗ τ ⊗ idB) : A ⊗ B ⊗ A ⊗ B→ A ⊗ B, (4.19)

where τ : B ⊗ A→ A ⊗ B is given by

τ(ϕ ⊗ a) =
∑

(a),(ϕ)

〈ϕ(1), a(3)〉 〈ϕ(3), γ
−1(a(1))〉 a(2) ⊗ ϕ(2)

Lemma 4.19
We have the following equalities of linear maps

τ ◦ (idB ⊗ µ) = (µ ⊗ idB) ◦ (idA ⊗ τ) ◦ (τ ⊗ idA) : B ⊗ A ⊗ A→ A ⊗ B
τ ◦ (∆∗ ⊗ idA) = (idA ⊗ ∆∗) ◦ (τ ⊗ idB) ◦ (idB ⊗ τ) : B ⊗ B ⊗ A→ A ⊗ B

Proof. Consider the first claimed equation. We take ϕ ∈ B and a, b ∈ A, and show that the values
of both maps on the simple tensor ϕ ⊗ a ⊗ b are equal. Calculating the left hand side, we use the
homomorphism property of coproduct

τ(ϕ ⊗ ab) =
∑

(ϕ),(ab)

〈ϕ(1), (ab)(3)〉 〈ϕ(3), γ
−1((ab)(1))〉 (ab)(2) ⊗ ϕ(2)

=
∑

(ϕ),(a),(b)

〈ϕ(1), a(3)b(3)〉 〈ϕ(3), γ
−1(a(1)b(1))〉 a(2)b(2) ⊗ ϕ(2).

We then calculate the right hand side using in the second and third steps coassociativity and
definition of the coproduct µ∗|B in B ⊂ A◦, respectively,

(µ ⊗ idB) ◦ (idA ⊗ τ) ◦ (τ ⊗ idA)(ϕ ⊗ a ⊗ b)

= (µ ⊗ idB) ◦ (idA ⊗ τ)
( ∑

(ϕ),(a)

〈ϕ(1), a(3)〉 〈ϕ(3), γ
−1(a(1))〉 a(2) ⊗ ϕ(2) ⊗ b

)
= (µ ⊗ idB)

( ∑
(ϕ),(a),(b)

〈ϕ(1), a(3)〉 〈ϕ(5), γ
−1(a(1))〉 〈ϕ(2), b(3)〉 〈ϕ(4), γ

−1(b(1))〉 a(2) ⊗ b(2) ⊗ ϕ(3)

)
=

∑
(ϕ),(a),(b)

〈ϕ(1), a(3)b(3)〉 〈ϕ(3), γ(b(1))γ−1(a(1))〉 a(2)b(2) ⊗ ϕ(2).

By the anti-homomorphism property of γ−1, the expressions are equal, so we have proved the first
equality. The proof of the second equality is similar. �
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Sketch of a proof of the Hopf algebra axioms in Theorem 4.15. Let us check associativity (H1) ofD(A,B).
Using first Equation (4.19), then the second formula in Lemma 4.19, and finally changing the order
of maps that operate in different components, we calculate

µD ◦ (µD ⊗ idD) = (µ ⊗ ∆∗) ◦ (idA ⊗ τ ⊗ idB) ◦ (µ ⊗ ∆∗ ⊗ idA ⊗ idB) ◦ (idA ⊗ τ ⊗ idB ⊗ idA ⊗ idB)
= (µ ⊗ ∆∗) ◦ (idA ⊗ idA ⊗ ∆∗ ⊗ idB) ◦ (idA ⊗ τ ⊗ idB ⊗ idB) ◦ (idA ⊗ idB ⊗ τ ⊗ idB)

◦ (µ ⊗ idB ⊗ idB ⊗ idA ⊗ idB) ◦ (idA ⊗ τ ⊗ idB ⊗ idA ⊗ idB)
= (µ ⊗ ∆∗) ◦ ((µ ⊗ idA) ⊗ (∆∗ ⊗ idB)) ◦ (idA ⊗ idA ⊗ τ ⊗ idB ⊗ idB) ◦ (idA ⊗ τ ⊗ τ ⊗ idB).

Likewise, with the first of the formulas in the lemma, we calculate

µD ◦ (idD ⊗ µD) = (µ ⊗ ∆∗) ◦ (idA ⊗ τ ⊗ idB) ◦ (idA ⊗ idBµ ⊗ µ ⊗ ∆∗) ◦ (idA ⊗ idB ⊗ idA ⊗ τ ⊗ idB)
= (µ ⊗ ∆∗) ◦ (idA ⊗ µ ⊗ idB ⊗ idB) ◦ (idA ⊗ idA ⊗ τ ⊗ idB) ◦ (idA ⊗ τ ⊗ idA ⊗ idB ⊗ idB)

◦ (idA ⊗ idB ⊗ idA ⊗ idA ⊗ ∆∗) ◦ (idA ⊗ idB ⊗ idA ⊗ τ ⊗ idB)
= (µ ⊗ ∆∗) ◦ ((idA ⊗ µ) ⊗ (idB ⊗ ∆∗)) ◦ (idA ⊗ idA ⊗ τ ⊗ idB ⊗ idB) ◦ (idA ⊗ τ ⊗ τ ⊗ idB).

Using associativity (H1) for both algebras (A, µ, η) and (B,∆∗, ε∗) we see that these two expressions
match and associativity follows for the Drinfeld doubleD(A,B).

Some of the other axioms are very easy to check. Consider for example coassociativity (H1’) of
D(A,B). In view of Equation (4.16), and coassociativity of both A and B, we have

(∆D ⊗ idD) ◦ ∆D(a ⊗ ϕ) =
∑
(a)

∑
(ϕ)

∑
(a(1))

∑
(ϕ(2))

(a(1))(1) ⊗ (ϕ(2))(2) ⊗ (a(1))(2) ⊗ (ϕ(2))(1) ⊗ a(2) ⊗ ϕ(1)

=
∑
(a)

∑
(ϕ)

∑
(a(2))

∑
(ϕ(1))

a(1) ⊗ ϕ(2) ⊗ (a(2))(1) ⊗ (ϕ(1))(2) ⊗ (a(2))(2) ⊗ (ϕ(1))(1)

= (idD ⊗ ∆D) ◦ ∆D(a ⊗ ϕ).

�

Exercise 42 (The Drinfeld double of the Hopf algebra of a finite group)
Let G be a finite group, and A = C[G] the Hopf algebra of the group G. Let (eg)g∈G be the natural
basis of A, and let ( fg)g∈G be the dual basis of A∗.

(a) Show that A∗ is, as an algebra, isomorphic to the algebra of complex valued functions on G
with pointwise multiplication: when φ,ψ : G → C, the product φψ is the function defined
by (φψ)(g) = φ(g)ψ(g) for all g ∈ G.

(b) Find explicit formulas for the coproduct, counit and antipode of A∗ in the basis ( fg)g∈G.

LetD(A) be the Drinfeld double of A.

(c) Find explicit formulas for the coproduct, counit and unit ofD(A) in the basis (eh ⊗ fg)g,h∈G.

(d) Show that the product µD and antipode γD ofD(A) are given by the following formulas

µD
(
(eh′ ⊗ fg′ ) ⊗ (eh ⊗ fg)

)
= δg′,hgh−1 eh′h ⊗ fg

γD(eh ⊗ fg) = eh−1 ⊗ fhg−1h−1 .

4.4 A Drinfeld double of Hq and the quantum groupUq(sl2)

A Drinfeld double of Hq for q not a root of unity

Let q ∈ C \ {0}, and assume throughout that qN , 1 for all N , 0. Recall that as an algebra, Hq is
generated by elements a, a−1, b subject to the relations

a a−1 = 1 , a−1 a = 1 , a b = q b a.
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The Hopf algebra structure on Hq is then uniquely determined by the coproducts of a and b,

∆(a) = a ⊗ a , ∆(b) = a ⊗ b + b ⊗ 1.

We have considered the elements 1∗, ã, ã−1, b̃ ∈ H◦q given by

〈1∗, bman
〉 = δm,0 , 〈ã±1, bman

〉 = δm,0 q±n , 〈b̃, bman
〉 = δm,1.

Let H′q ⊂ H◦q be the Hopf subalgebra of H◦q generated by these elements. By Lemma 4.1, H′q
is isomorphic to Hq as a Hopf algebra by the isomorphism which sends a 7→ ã and b 7→ b̃. In
particular, (b̃m ãn)m∈N,n∈Z is a basis of H′q.

For the Drinfeld double we need the inverse of the antipode. This is given in the following.

Exercise 43 (A formula for the inverse of the antipode in Hq)
Show that in the Hopf algebra Hq, the antipode γ is invertible and its inverse is given by

γ−1(bman) = (−1)m q−
1
2 m(m−1)−mn bma−m−n.

Therefore we can consider the associated Drinfeld double, Dq = D(Hq,H′q). Both Hq and H′q are
embedded in Dq, so let us choose the following notation for the embedded generators

α = ιHq (a) = a ⊗ 1∗ β = ιHq (b) = b ⊗ 1∗ α̃ = ιH′q (ã) = 1 ⊗ ã β̃ = ιH′q (b̃) = 1 ⊗ b̃.

We have, by properties (i), (ii), (iii) of Drinfeld double

βm αn β̃m′ α̃n′ = bman
⊗ b̃m′ ãn′

and these elements, for m,m′ ∈N and n,n′ ∈ Z form a basis of Dq.

Let us start by calculating the products of the elements α, β, α̃, β̃ ∈ Dq. Among the products of the
generators of Dq, property (i) makes those involving only α and β trivial, and property (ii) makes
those involving only α̃ and β̃ trivial. Also by property (iii) there is nothing to calculate for the
products α α̃, α β̃, β α̃, β β̃. For the rest, we need the double coproducts of a and b,

(∆ ⊗ idHq ) ◦ ∆(a) = a ⊗ a ⊗ a

(∆ ⊗ idHq ) ◦ ∆(b) = a ⊗ a ⊗ b + a ⊗ b ⊗ 1 + b ⊗ 1 ⊗ 1,

and of ã and b̃ for which the formulas are the same. We also need particular cases of Exercise 43,

γ−1(a) = a−1 , γ−1(b) = −b a−1.

The products that require short calculations are

α̃ α = 〈ã, a〉︸︷︷︸
=q

〈ã, γ−1(a)〉︸     ︷︷     ︸
=q−1

a ⊗ ã = α α̃

and

α̃ β = 〈ã, b〉︸︷︷︸
=0

〈ã, γ−1(a)〉︸     ︷︷     ︸
=q−1

a ⊗ ã + 〈ã, 1〉︸︷︷︸
=1

〈ã, γ−1(a)〉︸     ︷︷     ︸
=q−1

b ⊗ ã + 〈ã, 1〉︸︷︷︸
=1

〈ã, γ−1(b)〉︸     ︷︷     ︸
=0

1 ⊗ ã

= q−1 β α̃

and

β̃ α = 〈ã, a〉︸︷︷︸
=q

〈b̃, γ−1(a)〉︸     ︷︷     ︸
=0

a ⊗ ã + 〈ã, a〉︸︷︷︸
=q

〈1∗, γ−1(a)〉︸      ︷︷      ︸
=1

a ⊗ ã + 〈b̃, a〉︸︷︷︸
=0

〈1∗, γ−1(a)〉︸      ︷︷      ︸
=1

a ⊗ ã

= q α β̃
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and

β̃ β = 〈ã, b〉 〈b̃, γ−1(a)〉 a ⊗ ã + 〈ã, 1〉 〈b̃, γ−1(a)〉 b ⊗ ã + 〈ã, 1〉 〈b̃, γ−1(b)〉 1 ⊗ ã

+ 〈ã, b〉 〈1∗, γ−1(a)〉 a ⊗ b̃ + 〈ã, 1〉 〈1∗, γ−1(a)〉 b ⊗ b̃ + 〈ã, 1〉 〈1∗, γ−1(b)〉 1 ⊗ b̃

+ 〈b̃, b〉 〈1∗, γ−1(a)〉 a ⊗ 1∗ + 〈b̃, 1〉 〈1∗, γ−1(a)〉 b ⊗ 1∗ + 〈b̃, 1〉 〈1∗, γ−1(b)〉 1 ⊗ 1∗

= − α̃ + β β̃ + α.

We get the following description of Dq.

Proposition 4.20
The Hopf algebra Dq is, as an algebra, generated by elements α, α−1, β, α̃, α̃−1, β̃ with relations

αα−1 = 1 = α−1α α̃α̃−1 = 1 = α̃−1α̃

αβ = q βα α̃β̃ = q β̃α̃

αβ̃ = q−1 β̃α α̃β = q−1 βα̃

αα̃ = α̃α β̃β − ββ̃ = α − α̃.

The Hopf algebra structure on Dq is the unique one such that

∆(α) = α ⊗ α ∆(α̃) = α̃ ⊗ α̃ ∆(β) = α ⊗ β + β ⊗ 1 ∆(β̃) = β̃ ⊗ α̃ + 1 ⊗ β̃.

Proof. It is clear that the elements generate Dq, and we have just shown that the above relations
hold for the generators. Using the relations it is possible to express any element of Dq as a linear
combination of the vectors βmαnβ̃m′ α̃n′ . Since these are linearly independent in Dq, it follows that
the algebra Dq has a presentation given by the generators and relations as stated. The coproduct
formulas for α, α̃, β, β̃ are obvious in view of requirements (i) and (ii) of Drinfeld double, and it is
a standard calculation to show that the structural maps are determined by the given values. �

The quantum groupUq(sl2) as a quotient of Dq2

To take quotients of Hopf algebras we need the notion of Hopf ideals. A vector subspace J in a
Hopf algebra H is a Hopf ideal if J is a two-sided ideal of H as an algebra (i.e. µ(J ⊗ H) ⊂ J and
µ(H ⊗ J) ⊂ J), and J is a coideal of H as a coalgebra (i.e. ∆(J) ⊂ J ⊗ H + H ⊗ J and ε|J = 0) and J
is an invariant subspace for the antipode (i.e. γ(J) ⊂ J). These requirements are precisely what
one needs for the structural maps to be well defined on the equivalence classes x + J that form the
quotient space H/J.

Lemma 4.21
The element κ = α α̃ is a grouplike central element in Dq, and the two-sided ideal Jq generated by
κ − 1 is a Hopf ideal.

Proof. We have

∆(κ) = ∆(αα̃) = ∆(α) ∆(α̃) = (α ⊗ α) (α̃ ⊗ α̃) = (αα̃ ⊗ αα̃) = κ ⊗ κ,

so κ is grouplike. To show that it is central, it suffices to show that it commutes with the generators,
but this is easily seen from the relations in Proposition 4.20: for example

ακ = ααα̃ = αα̃α = κα

βκ = βαα̃ = q−1 αβα̃ = q−1 q αα̃β = κβ,

and similarly for commutation with α̃ and β̃. The two sided ideal generated by κ − 1 is spanned
by elements of the form x(κ − 1)y, where x, y ∈ Dq. To show that it is a coideal, we first compute

∆(κ − 1) = κ ⊗ κ − 1 ⊗ 1 = (κ − 1) ⊗ κ + 1 ⊗ (κ − 1) ∈ Jq ⊗Dq + Dq ⊗ Jq.
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Then, using ∆(x(κ − 1)y) = ∆(x) ∆(κ − 1) ∆(y), the more general result ∆(Jq) ⊂ Jq ⊗ Dq + Dq ⊗ Jq
follows. To show that Jq is stable under antipode, we first compute

γ(κ − 1) = α̃−1α−1
− 1 = α̃−1α−1(1 − αα̃) = −α̃−1α−1(κ − 1) ∈ Jq.

Then, using γ(x(κ−1)y) = γ(y)γ(κ−1)γ(x), the more general result γ(Jq) ⊂ Jq follows. To show that
ε|Jq = 0 note that ε(κ−1) = ε(κ)−ε(1) = 1−1 = 0 and thus also ε(x(κ−1)y) = ε(x) ε(κ−1) ε(y) = 0. �

We can now take the quotient Hopf algebra Dq/Jq. Let us summarize what we have done, then.
We’ve taken two copies of the building block, or the “quantum Borel subalgebra” Hq and put
them together by the Drinfeld double construction as Dq = D(Hq,H′q) — one of the copies has
generators α and β, and the other has generators α̃ and β̃. Then we have identified their “quantum
Cartan subalgebras”, generated respectively by α and α̃, by requiring α = α̃−1 (which is equivalent
to κ − 1 = 0). This is a way to obtain essentiallyUq(sl2), although, to be consistent with common
usage, we redefine the parameter q and use q2 instead.

If we use the notations K, E and F for the equivalence classes in Dq2/Jq2 of α̃, −1
q−q−1 β̃ and β,

respectively, then the relations in Proposition 4.20 become the ones in the following definition of
Uq(sl2).

Definition 4.22. Let q ∈ C \ {0,+1,−1}. The algebraUq(sl2) is the algebra generated by elements
E,F,K,K−1 with relations

K K−1 = 1 = K−1 K K E K−1 = q2 E

E F − F E =
1

q − q−1

(
K − K−1

)
K F K−1 = q−2 F.

We equipUq(sl2) with the unique Hopf algebra structure such that

∆(K) = K ⊗ K , ∆(E) = E ⊗ K + 1 ⊗ E , ∆(F) = K−1
⊗ F + F ⊗ 1.

Applying formula (H3) to the coproducts and solving for the antipodes of the generators, one
easily gets

γ(K) = K−1 , γ(E) = −E K−1 , γ(F) = −K F.

An easy comparison of the above definition with Proposition 4.20 and Lemma 4.21 gives the
following.

Proposition 4.23
When q is not a root of unity, then the Hopf algebrasUq(sl2) and Dq2/Jq2 are isomorphic.

A convenient Poincaré-Birkhoff-Witt type basis ofUq(sl2) is

(Fm Kk En)m,n∈N,k∈Z.

For working with the above parametrization, with q2 replacing what used to be q, it is convenient
to use the following more symmetric q-integers and q-factorials, which we denote as

[n] =
qn
− q−n

q − q−1 (4.20)

[n]! = [n] [n − 1] · · · [2] [1] (4.21)[
n
k

]
=

[n]!
[k]! [n − k]!

(4.22)
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when considered as rational functions of q, and as

[n]q , [n]q! ,

[
n
k

]
q
,

respectively, when evaluated at a value q ∈ C \ {0}.

Exercise 44 (Some q-formulas)
Show the following properties of the q-integers, q-factorials and q-binomials

(a) [n] = qn−1 + qn−3 + · · · + q−n+3 + q−n+1 and [n]q = q1−n ~n�q2

(b) [m + n] = qn [m] + q−m [n] = q−n [m] + qm [n]

(c) [l] [m − n] + [m] [n − l] + [n] [l −m] = 0

(d) [n] = [2] [n − 1] − [n − 2].

Exercise 45 (Commutator formulas inUq(sl2))
Let q ∈ C \ {0, 1,−1} and consider the algebraUq(sl2). Prove that for all k ≥ 1 one has

E Fk
− Fk E =

[k]q

q − q−1 Fk−1
(
q1−k K − qk−1 K−1

)
F Ek
− Ek F =

[k]q

q − q−1

(
qk−1 K−1

− q1−k K
)

Ek−1.

4.5 Representations of Dq2 andUq(sl2)

Let us now start analyzing representations of Uq(sl2) and the closely related Hopf algebra Dq2 .
The general story is very much parallel with the (more familiar) case of representations of sl2. In
particular, in a givenUq(sl2)-module V we will attempt to diagonalize K, and then notice that if v
is an eigenvector of K with eigenvalue λ,

K.v = λ v,

then E.v and F.v also either vanish or are eigenvectors of eigenvalues q±2λ,

K.(E.v) = KE.v = q2 EK.v = q2λ E.v , K.(F.v) = KF.v = q−2 FK.v = q−2λ F.v.

The situation is nicest if q2 is not a root of unity, so that repeated application of E (or F) on an
eigenvector produces other eigenvectors with distinct eigenvalues.

Another useful observation for studying representations is the following, very much analoguous
to the quadratic Casimir element of ordinary sl2.

Lemma 4.24
The elements C ∈ Uq(sl2) and ν ∈ Dq2 given by

C = E F +
1

(q − q−1)2

(
q−1 K + q K−1

)
= F E +

1
(q − q−1)2

(
q K + q−1 K−1

)
and

ν = β̃ β +
q

q − q−1 α +
q−1

q − q−1 α̃

= β β̃ +
q−1

q − q−1 α +
q

q − q−1 α̃

are central.
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Proof. Let us first show that the two formulas for C are equal. Their difference is

E F − F E +
1

(q − q−1)2

(
(q−1
− q)K + (q − q−1)K−1

)
.

After canceling one factor q − q−1 from the numerator and denominator, this is seen to be zero by
one of the defining relations ofUq(sl2).

To show that C is central, it suffices to show that it commutes with the generators K, E and
F. Commutation with K is evident, since KEF = q2 EKF = EFK and the second term of C is a
polynomial in K and K−1. To show commutation with E, calculate CE using the first expression
for C to get

C E = E F E +
1

(q − q−1)2

(
q−1 K E + q K−1 E

)
and EC using the second expression for C to get

E C = E F E +
1

(q − q−1)2

(
q E K + q−1 E K−1

)
.

Then it suffices to recall the relations KE = q2 EK and K−1E = q−2 EK−1 to see the equality CE = EC.
The commutation of C with F is shown similarly.

The verification that ν is central in Dq2 is left as an exercise. For q not a root of unity, the first
statement in fact follows from the second by passing to the quotientUq(sl2) � Dq2/Jq2 . �

On representations of Dq2

We will start by analyzing representations of Dq2 , because every representation ofUq(sl2) can be
interpreted as a representation of Dq2 , where κ = αα̃ acts as identity. Note that we thus assume q
is not a root of unity, so that Dq2 is defined andUq(sl2) � Dq2/Jq2 . The case when q is a root of unity
is more complicated in terms of representation theory and has to be treated separately anyway.

We will first look for irreducible representations of Dq2 , i.e. simple Dq2 -modules. Note first of all
the following general principle (essentially the same as Schur’s lemma).

Lemma 4.25
If V is a finite dimensional irreducible representation of an algebra A, and if c ∈ A is a central
element, then there is a λ ∈ C such that c acts as λ idV on V.

Proof. It is always possible to find one eigenvector of c, with eigenvalue that is a root of the
characteristic polynomial. Call the eigenvalue λ and note that c − λ idV is a Dq2 -module map
V → V with a nontrivial kernel. The kernel is a subrepresentation, so by irreducibility it has to be
the whole V. �

Because of the above principle, we will in what follows consider only representations of Dq2 where
κ = αα̃ acts as λ id. As a consequence α̃ has the same action as λα−1.

The following exercise illustrates an alternative concrete approach to the representation theory of
Dq2 . It is instructive, but we shall not pursue this approach further.

Exercise 46 (A first step of a calculation for diagonalization of α in Dq2 -modules)
Let q be a non-zero complex number which is not a root of unity, and let Dq2 be the algebra
generated by α, α−1, β, α̃, α̃−1, β̃ with relations

αα−1 = 1 = α−1α α̃α̃−1 = 1 = α̃−1α̃

αβ = q2 βα α̃β̃ = q2 β̃α̃

αβ̃ = q−2 β̃α α̃β = q−2 βα̃

αα̃ = α̃α β̃β − ββ̃ = α − α̃.
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(a) Suppose that V is a finite dimensional Dq2 -module, of dimension d. By considering general-
ized eigenspaces of α (or of α̃), show that the elements βk and β̃k must act as zero on V for
any k ≥ d.

(b) Find polynomials P(α, α̃), Q(α, α̃), R(α, α̃) of α and α̃ such that the following equation holds

P(α, α̃) β2 β̃2 + Q(α, α̃) β β̃2 β + R(α, α̃) β̃2 β2 = (qα − q−1 α̃) (α − α̃) (q−1 α − q α̃).

(c) Suppose that V is a Dq2 -module where the central element κ = αα̃ acts as λ idV and where
β̃2 acts as zero. Show, using the result of (c), that α and α̃ are diagonalizable on V and the
eigenvalues of both are among

±

√

λ q−1, ±
√

λ, ±
√

λ q.

Conclude in particular that in any two-dimensionalUq(sl2)-module, K is diagonalizable and
its possible eigenvalues are ±1, ±q, ±q−1.

The same idea can be used to diagonalize α in more general modules as follows.

Exercise 47 (Explicit diagonalization for Dq2 andUq(sl2))
Let q and Dq2 be as in the previous exercise. Define, for t ∈ Z, the elements

θt = qt α − q−t α̃.

(a) Prove the following formula

β̃kβm =

k∑
j=0

[m]q! [k]q!
[m − j]q! [k − j]q! [ j]q!

βm− j
( j∏

s=1

θm+k− j−s

)
β̃k− j.

Note that this contains the formulas of Exercise 45 as special cases.

(b) By considering linear combinations of elements of the form

Pm(α, α̃) βk−m β̃k βm,

where Pm are polynomials in two variables, show that the element

k−1∏
t=−k+1

θt

belongs to the two-sided ideal generated by β̃k.

(c) Suppose that V is a Dq2 -module where the central element κ = αα̃ acts as λ idV and where
β̃k acts as zero. Show that α and α̃ are diagonalizable on V and that their eigenvalues are
among

±

√

λ q1−k, ±
√

λ q2−k, . . . , ±
√

λ qk−2, ±
√

λ qk−1.

(d) Conclude that on any finite dimensionalUq(sl2) module of dimension d, the eigenvalues of
K are among ±qd−1,±qd−2, . . . ,±q2−d,±q1−d. What is the analoguous result about sl2?

Suppose now that V is an irreducible representation of Dq2 , and denote the (only) eigenvalue of
κ by λ , 0. Take an eigenvector v of α, so α.v = µ′ v for some µ′ , 0. Now an easy computation
shows that the vectors β̃ j.v are either eigenvectors of α with eigenvalue q−2 jµ′, or zero vectors.
Since these eigenvalues are different and eigenvectors corresponding to different eigenvalues are
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linearly independent, we see that if V is finite dimensional, then there must be a j > 0 such that
the vector w0 = β̃ j−1.v satisfies

β̃.w0 = 0 and α.w0 = µ w0,

where µ = q2(1− j)µ′. Denote w j = β j.w0. Again, w j are eigenvectors of α with eigenvalues q2 jµ, so
for some d ∈Nwe have

wd−1 = βd−1.w0 , 0 but wd = β.wd−1 = βd.w0 = 0.

We claim that the linear span W ⊂ V of {w0,w1,w2, . . . ,wd−1} is a subrepresentation, and thus by
irreducibility W = V. We have

α.w j = q2 jµ w j and α̃.w j = q−2 jλ
µ

w j,

so W is stable under the action of α, α̃ and β. We must only verify that β̃ preserves W. Calculate
the action of β̃ on w j commuting β̃ to the right of all β, and finally recalling that β̃.w0 = 0,

β̃.w j = β̃β j.w0 = (ββ̃ + α − α̃)β j−1.w0

= ββ̃β j−1.w0 + (q2( j−1)µ − q−2( j−1)λ
µ

) β j−1.w0

= β(ββ̃ + α − α̃)β j−2.w0 +
(
q2( j−1)µ − q−2( j−1)λ

µ

)
β j−1.w0

= β2β̃β j−2.w0 +
(
(q2( j−1) + q2( j−2))µ − (q−2( j−1) + q−2( j−2))

λ
µ

)
β j−1.w0

= · · ·

= β jβ̃.w0 +
(
(q2( j−1) + q2( j−2) + · · · + q2 + 1)µ − (q−2( j−1) + q−2( j−2) + · · · + q−2 + 1)

λ
µ

)
β j−1.w0

= [ j]q

(
q j−1µ − q1− jλ

µ

)
w j−1.

This finishes the proof that W is a subrepresentation. We will finally obtain a relation between
the values of µ, λ and d. For this, note that βd.w0 = wd = 0. Thus also β̃βd.w0 = 0. But the above
calculation is still valid and it says that β̃βd.w0 is a constant multiple of wd−1, with the constant
[d]q (qd−1µ − q1−dλ/µ). This constant must therefore vanish, ans since the q-integers are non-zero,
we get the following relation between the parameters λ, µ and d

µ2 = q2(1−d)λ. (4.23)

Given λ ∈ C \ {0} and d ∈N, the two solutions for µ are

µ = ±q1−d
√

λ.

In particular, the eigenvalues of α on W are of the form q2 jµ and those of α̃ are q−2 jλ/µ, so the
spectra of both consist of

±

√

λq1−d, ±
√

λq3−d, . . . , ±
√

λqd−3, ±
√

λqd−1.

Note also that the action of β̃ simplifies a bit,

β̃.w j = ±
√

λ (q−1
− q) [ j]q [d − j]q w j−1.

We have in fact found all the irreducible finite dimensional representations of Dq2 .
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Theorem 4.26
For any nonzero complex number λ and a choice of square root

√
λ, and d a positive integer, there

exists a d-dimensional irreducible representation W(
√
λ)

d of Dq2 with basis {w0,w1,w2, . . . ,wd−1} such
that

α.w j =
√

λ q1−d+2 j w j α̃.w j =
√

λ qd−1−2 j w j

β.w j = w j+1 β̃.w j =
√

λ [ j]q [d − j]q (q−1
− q) w j−1.

Any finite dimensional Dq2 -module contains a submodule isomorphic to some W(
√
λ)

d , and in
particular there are no other finite dimensional irreducible Dq2 modules.

Proof. To verify that the formulas indeed define a representation is straightforward and the calcu-

lations are essentially the same as above. To verify irreducibility of W(
√
λ)

d , note that if W′
⊂W(

√
λ)

d
is a non-zero submodule, then it contains some eigenvector of α, which must be proportional to
some w j. Then by the repeated action of β̃ and βwe see that W′ contains all w j, j = 0, 1, 2, . . . , d− 1
(note that the coefficient

√
λ [ j]q [d − j]q (q−1

− q) is never zero for j = 1, 2, . . . , d − 1). Above we
already showed that any finite dimensional Dq2 module V must contain a submodule isomorphic

to W(±
√
λ)

d , so it follows indeed that these are all the possible irreducible Dq2 -modules. �

Since any representation ofUq(sl2) is a representation of Dq2 such that λ = 1, we have also found
all irreducible representations ofUq(sl2). To get the explicit formulas, recall that the generators K,
E, F correspond to the equivalence classes of α̃, −1

q−q−1 β̃ and β modulo the Hopf ideal Jq2 generated
by the element κ − 1.

Theorem 4.27
Let q be a non-zero complex number which is not a root of unity. For any positive integer d and
for ε ∈ {+1,−1}, there exists a d-dimensional irreducible representation Wε

d of Uq(sl2) with basis
{w0,w1,w2, . . . ,wd−1} such that

K.w j = ε qd−1−2 j w j

F.w j = w j+1

E.w j = ε [ j]q [d − j]q w j−1.

There are no other finite dimensional irreducibleUq(sl2)-modules.

Proof. Follows directly from Theorem 4.26. �

Using the formulas in Lemma 4.24 one computes that on Wε
d

the central element C acts as ε
qd + q−d

(q − q−1)2 idWε
d
. (4.24)

Since the numbers ±(qd + q−d) are distinct, we see first of all that none of the Wε
d are isomorphic

with each other (of course for different dimension d they couldn’t be isomorphic anyway). Thus
the value of C distinguishes the different irreducible representations.

Having found all irreducible representations ofUq(sl2), we will next prove complete reducibility
of all representations of it. Let us check that when q is not a root of unity, Uq(sl2) satisfies the
semisimplicity criterion of Proposition 3.53.

Lemma 4.28
Let q ∈ C \ {0} not a root of unity. If V is a finite dimensional Uq(sl2)-module and W ⊂ V is an
irreducible submodule such that V/W is a trivial one dimensional module, then there is a trivial
one dimensional submodule W′

⊂ V such that V = W ⊕W′.
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Proof. Theorem 4.27 lists all possible irreducible Uq(sl2)-modules, they are Wε
d for d a positive

integer and ε ∈ {±1}. So we have W � Wε
d for some d and ε. We first suppose that d , 1 or ε , +1

— the case when W also is trivial (i.e. W � W+1
1 ) is treated separately. By Equation (4.24), the

central element C acts as multiplication by the constant cd,ε = ε(qd + q−d)/(q − q−1)2 on W. On the
quotient V/W it acts as c1,1 = (q + q−1)/(q − q−1)2. Therefore

1
cd,ε − c1,1

(
C − c1,1 idV

)
is a projection to W which is also anUq(sl2)-module map. This implies that W has a complementary
submodule Ker (C − c1,1 id).

The case when both W and V/W are trivial has to be treated separately, but it is very easy to show
that in this case V is a trivial 2-dimensional representation and any complementary subspace to
W is a complementary submodule. �

Corollary 4.29
For q not a root of unity, the algebraUq(sl2) is semisimple.

Proof. Use Proposition 3.53, Remark 3.54 and Lemma 4.28. �

Exercise 48 (Some tensor products ofUq(sl2)-modules)
Assume that q ∈ C is not a root of unity.

(a) Show that Wε
d � W+1

d ⊗Wε
1 .

(b) Let d1 ≥ d2 > 0 and denote by w(1)
0 ,w

(1)
1 , . . . ,w

(1)
d1−1 and w(2)

0 ,w
(2)
1 , . . . ,w

(2)
d2−1 the bases of W+1

d1
and

W+1
d2

, respectively, chosen as in Theorem 4.27. Consider the module W+1
d1
⊗W+1

d2
. Show that

for any l ∈ {0, 1, 2, . . . , d2 − 1} the vector

v =

l∑
s=0

(−1)s

[s]q!
[l]q!

[l − s]q!
[d1 − 1 − s]q!

[d1 − 1]q!
[d2 − l − 1 + s]q!

[d2 − l − 1]q!
qs(2l−d2−s) w(1)

s ⊗ w(2)
l−s

is an eigenvector of K and that it satisfies

E.v = 0.

(c) Using the result of (b), conclude that we have the following isomorphism ofUq(sl2)-modules

W+1
d1
⊗W+1

d2
� W+1

d1+d2−1 ⊕W+1
d1+d2−3 ⊕W+1

d1+d2−5 ⊕ · · · ⊕W+1
d1−d2+3 ⊕W+1

d1−d2+1.

4.6 Solutions to YBE from infinite dimensional Drinfeld doubles

Let us pause for a moment to see where we are in finding solutions to the Yang-Baxter equa-
tion, Equation (YBE). The overall story goes smoothly — by Theorem 4.13 any representation of
any braided Hopf algebra gives us a solution of YBE, and by Theorem 4.18 the Drinfeld double
construction produces braided Hopf algebras. We have even concretely described an interest-
ing Drinfeld double Dq2 and a quotient Uq(sl2) of it, and we have found all their irreducible
representations in Theorems 4.26 and 4.27.

There is just one issue — to obtain the universal R-matrix which makes the Drinfeld double
a braided Hopf algebra, we had to assume finite dimensionality of the Hopf algebra whose
Drinfeld double we take. Unfortunately, the Hopf algebra Dq2 is a Drinfeld double of the infinite
dimensional building block Hopf algebra Hq2 , so we seem to have a small problem.

Although we can’t properly make Dq2 andUq(sl2) braided Hopf algebras, in that we will not really
find a universal R-matrix in the second tensor power of these algebras, we can nevertheless find
solutions of the Yang-Baxter equation by more or less the same old receipe. Let us first describe
the heuristics, and then prove the main result.
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Heuristics and formula for the R-matrices

Assume that A is a Hopf algebra with invertible antipode, and D = D(A,A◦) is the Drinfeld
double. Recall that D = A ⊗ A◦ as a vector space, and the Hopf algebras A and (A◦)cop are
embedded toD by the maps

ιA : A→D ιA◦ : A◦ →D
a 7→ a ⊗ 1∗ ϕ 7→ 1 ⊗ ϕ.

We would like to set, as in Theorem 4.18,

R ?
=

∑
α

ιA(eα) ⊗ ιA◦ (δα), (4.25)

where (eα) is a basis of A, and (δα) is a “dual basis” of A◦. This is of course problematic in the
infinite dimensional case.

Let us first fix some notation. Since A embeds toD as a Hopf algebra, we can consider restrictions
on A of elements φ ∈ D◦ of the restricted dual of the Drinfeld double: define φ|A ∈ A◦ by

〈φ|A, a〉 = 〈φ, ιA(a)〉 for all a ∈ A.

Furthermore, since A◦ embeds toD, we can interpret the above as an element ofD. We define

φ′ = ιA◦ (φ|A) ∈ D for any φ ∈ D◦. (4.26)

If the bases (eα) and (δα) were to be dual to each other, we would expect a formula of the type∑
α

〈ϕ, eα〉 δα
?
= ϕ

to hold for any ϕ ∈ A◦. So in particular when ϕ = φ|A, we expect∑
α

〈φ|A, eα〉 ιB(δα) ?
= ιB(φ|A) = φ′.

Returning to the heuristic formula (4.25) for the universal R-matrix of D, let us consider how
it would act on representations. If V is a D-module with basis (v j)d

j=1 and representative forms
λi, j ∈ D

◦ such that

x.v j =

d∑
i=1

〈λi, j, x〉 vi for any x ∈ D

we would like to make the R-matrix act on V ⊗ V by

R(vi ⊗ v j)
?
=

∑
α

ιA(eα).vi ⊗ ιA◦ (δα).v j

?
=

∑
α

d∑
l,k=1

〈λl,i, ιA(eα)〉︸       ︷︷       ︸
=〈λl,i |A,eα〉

〈λk, j, ιA◦ (δα)〉 vl ⊗ vk

?
=

d∑
l,k=1

〈λk, j, (λl,i)′〉 vl ⊗ vk.

We have found a formula that is expressed only in terms of the representative forms, and therefore
it is meaningful also when A is infinite dimensional. We are mostly using Ř = SV,V ◦ R, so the
appropriate definitions are

Ř :V ⊗ V → V ⊗ V Ř(vi ⊗ v j) =

d∑
k,l=1

rk,l
i, j vk ⊗ vl

rk,l
i, j = 〈λk, j, (λl,i)′〉. (4.27)
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Proving that the formula gives solutions to YBE

We now check that Equation (4.27) indeed works. We record a small lemma, which is needed
along the way.

Lemma 4.30
For any φ ∈ D◦ and x ∈ D, the following equality holds inD

∑
(φ)

∑
(x)

〈φ(1), x(2)〉 x(1)(φ(2))′ =
∑
(φ)

∑
(x)

〈φ(2), x(1)〉 (φ(1))′x(2).

When x = ψ′ with ψ ∈ D◦ we have

∑
(φ),(psi)

〈φ(1), (ψ(1))′〉 (ψ(2))′ (φ(2))′ =
∑

(φ),(ψ)

〈φ(2), (ψ(2))′〉 (φ(1))′(ψ(1))′.

Proof. The proof of the first statement is left as an exercise. The second statement follows as a
particular case of the first, when we observe that for x = ψ′ the coproduct of x can be written in
terms of the coproduct of ψ as

∑
(x)

x(1) ⊗ x(2) = ∆D(x) = ∆D(ιA◦ (ψ|A)) = (ιA◦ ⊗ ιA◦ )((µ∗)cop(ψ|A)) =
∑
(ψ)

(ψ(2))′ ⊗ (ψ(1))′.

�

Theorem 4.31
Let A be a Hopf algebra with invertible antipode and B ⊂ A◦ a Hopf subalgebra of the restricted
dual, and let D = D(A,B) be the Drinfeld double associated to A and B. Let V be a D-module
with basis (v j)d

j=1, and assume that the representative forms λi, j ∈ D
◦ satisfy λi, j|A ∈ B. Then the

linear map Ř : V⊗V → V⊗V defined by Equation (4.27) satisfies the Yang-Baxter equation (YBE).
Furthermore, the associated braid group representation on V⊗n commutes with the action ofD.

Proof. The proof is a direct calculation — besides the definitions, the key properties to keep in
mind are the coproduct formula of representative forms µ∗(λi, j) =

∑
k λi,k ⊗ λk, j and the formulas

of Lemma 4.30. Let us take an elementary tensor vs ⊗ vt ⊗ vu ∈ V ⊗V ⊗V. Applying the left hand
side of the YBE on this, we get

Ř12 ◦ Ř23 ◦ Ř12(vs ⊗ vt ⊗ vu)

=
∑

i, j,k,l,m,n

rl,m
i,k rk,n

j,u ri, j
s,t vl ⊗ vm ⊗ vn

=
∑

i, j,k,l,m,n

〈λl,k, (λm,i)′〉 〈λk,u, (λn, j)′〉 〈λi,t, (λ j,s)′〉 vl ⊗ vm ⊗ vn

=
∑

i, j,l,m,n

〈λl,u, (λm,i)′(λn, j)′〉 〈λi,t, (λ j,s)′〉 vl ⊗ vm ⊗ vn

=
∑
l,m,n

∑
(λm,t),(λn,s)

〈λl,u, ((λm,t)(1))′((λn,s)(1))′〉 〈(λm,t)(2), ((λn,s)(2))′〉 vl ⊗ vm ⊗ vn,

where in the last two steps we used the coproduct formula for representative forms. Similarly, the
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right hand side of the YBE takes the value

Ř23 ◦ Ř12 ◦ Ř23(vs ⊗ vt ⊗ vu)

=
∑

i, j,k,l,m,n

rm,n
k, j rl,k

s,i ri, j
t,u vl ⊗ vm ⊗ vn

=
∑

i, j,k,l,m,n

〈λm, j, (λn,k)′〉 〈λl,i, (λk,s)′〉 〈λi,u, (λ j,t)′〉 vl ⊗ vm ⊗ vn

=
∑

j,k,l,m,n

〈λm, j, (λn,k)′〉 〈λl,u, (λk,s)′(λ j,t)′〉 vl ⊗ vm ⊗ vn

=
∑
l,m,n

∑
(λm,t),(λn,s)

〈(λm,t)(1), ((λn,s)(1))′〉 〈λl,u, ((λn,s)(2))′((λm,t)(2))′〉 vl ⊗ vm ⊗ vn.

The equality of the two sides of the Yang-Baxter equation then follows from the second formula
of Lemma 4.30 above.

To prove that the associated braid group representation commutes with the action of D, it is
enough to show that on V ⊗ V the matrix Ř commutes with the action of D. Let x ∈ D, and
calculate on elementary tensors

x.
(
Ř(vi ⊗ v j)

)
= x.

(∑
k,l

〈λk, j, (λl,i)′〉 vk ⊗ vl

)
=

∑
(x)

∑
k,l

〈λk, j, (λl,i)′〉
(
x(1).vk ⊗ x(2).vl

)
=

∑
(x)

∑
k,l,m,n

〈λk, j, (λl,i)′〉 〈λm,k, x(1)〉 〈λn,l, x(2)〉 vm ⊗ vn

=
∑
(x)

∑
l,m,n

〈λm, j, x(1) (λl,i)′〉 〈λn,l, x(2)〉 vm ⊗ vn

=
∑
(x)

∑
(λn,i)

∑
m,n

〈λm, j, x(1) ((λn,i)(2))′〉 〈(λn,i)(1), x(2)〉 vm ⊗ vn.

This is to be compared with

Ř
(
x.(vi ⊗ v j)

)
=

∑
(x)

Ř
(
x(1).vi ⊗ x(2).v j

)
=

∑
(x)

∑
k,l

〈λk,i, x(1)〉 〈λl, j, x(2)〉 Ř(vk ⊗ vl)

=
∑
(x)

∑
k,l,m,n

〈λk,i, x(1)〉 〈λl, j, x(2)〉 〈λm,l, (λn,k)′〉 vm ⊗ vn

=
∑
(x)

∑
k,m,n

〈λk,i, x(1)〉 〈λm, j, (λn,k)′ x(2)〉 vm ⊗ vn

=
∑
(x)

∑
(λn,i)

∑
m,n

〈(λn,i)(2), x(1)〉 〈λm, j, ((λn,i)(1))′ x(2)〉 vm ⊗ vn.

The two expressions agree by virtue of Lemma 4.30. �

4.7 On the quantum groupUq(sl2) at roots of unity

Throughout this section, let q < {+1,−1} be a root of unity and denote by e the smallest positive
integer such that qe

∈ {+1,−1}.
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A finite dimensional quotient when q is a root of unity

Exercise 49 (A finite dimensional quotient ofUq(sl2) when q is a root of unity)
(a) Show that the elements Ee,Ke,Fe are central inUq(sl2).

(b) Let J be two sided ideal in the algebraUq(sl2) generated by the central elements Ee, Fe and
Ke
− 1. Show that J is a Hopf ideal in the Hopf algebraUq(sl2). Show that the quotient Hopf

algebra Ũq(sl2) =Uq(sl2) / J is finite dimensional.

Hint: The formulas of Exercise 45 are useful.

Exercise 50 (The center of Ũq(sl2))
Assume that e is odd and satisfies qe = +1. Let A = Ũq(sl2) be the quotient of Uq(sl2) by the
relations Ee = 0, Fe = 0, Ke = 1 (see Exercise 49). A basis of A is

Ea Fb Kc with a, b, c ∈ {0, 1, 2, . . . , e − 1} .

(a) Show that the center of A is e-dimensional and a basis of the center is 1,C,C2,C3, . . . ,Ce−1,
where C is the quadratic Casimir

C = E F +
1

(q − q−1)2

(
q−1 K + q K−1

)
.

Hint: This can be done in different ways, but one possible strategy is the following:

- Describe the subspace of elements commuting with K.
- Write down the condition for elements to commute with both K and F and from this

argue that the dimension of the center is at most e.
- Argue that the powers of C are linearly independent central elements.

(b) Show that the unit is the only grouplike central element in Ũq(sl2).

Definition 4.32. Let A be a braided Hopf algebra with universal R-matrix R ∈ A⊗A, and denote
R21 = SA,A(R). Assume that there exists a central element θ ∈ A such that

∆(θ) = (R21 R)−1 (θ ⊗ θ) , ε(θ) = 1 and γ(θ) = θ.

Then A is said to be ribbon Hopf algebra and θ is called ribbon element.

Exercise 51 (Twists in modules over ribbon Hopf algebras)
Assume that A is a ribbon Hopf algebra and denote the braiding of A-modules V and W by cV,W .

(a) Show that the ribbon element θ is invertible.

(b) For any A-module V define a linear map ΘV : V → V by ΘV(v) = θ−1.v for all v ∈ V. Prove
the following:

– When f : V →W is an A-module map, we have ΘW ◦ f = f ◦ΘV.
– When V is an A-module, and V∗ is the dual A-module we have ΘV∗ = (ΘV)∗ (the right

hand side is the transpose of ΘV).
– When V and W are A-modules, we have ΘV⊗W = (ΘV ⊗ΘW) ◦ cW,V ◦ cV,W .

Exercise 52 (The Hopf algebra Ũq(sl2) is ribbon)
Let q be a root of unity, and assume that the smallest positive integer e such that qe

∈ {±1} is odd
and satisfies qe = +1. Then

R =
1
e

e−1∑
i, j,k=0

(q − q−1)k

[k]q!
qk(k−1)/2+2k(i− j)−2i j EkKi

⊗ FkK j
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is a universal R-matrix for A = Ũq(sl2) (see also Exercise 56).

(a) Show that K commutes with u = (µ ◦ (γ ⊗ idA)) (R21).

(b) Show that γ(γ(x)) = K x K−1 for all x ∈ A. Recalling a similar property of u, show that K−1 u
is a central element.

(c) Show that K−2 uγ(u−1) is a grouplike central element. Conclude that γ(K−1u) = K−1u.

(d) Show that θ = K−1 u is a ribbon element.

Representations at roots of unity

Recall that q ∈ C is assumed to be a root of unity and we denote by e the smallest positive integer
such that qe

∈ {+1,−1}.

Exercise 53 (IrreducibleUq(sl2)-modules of low dimension when q is a root of unity)
Consider the Hopf algebraUq(sl2).

(a) For d < e a positive integer and ε ∈ {±1}, show that the formulas

K.w j = ε qd−1−2 j w j

F.w j = w j+1

E.w j = ε [ j]q [d − j]q w j−1

still define an irreducibleUq(sl2)-module Wε
d with basis w0,w1,w2, . . . ,wd−1.

(b) Show that any irreducibleUq(sl2)-module of dimension less than e is isomorphic to a module
of the above type.

Exercise 54 (No irreducibleUq(sl2)-modules of high dimension when q is a root of unity)
The goal of this exercise is to show that there are no irreducible Uq(sl2)-modules of dimension
greater than e. It is convenient to use a proof by contradiction. Therefore, in parts (a) and (b),
suppose that V is an irreducibleUq(sl2)-module V with dim V > e.

(a) If there exists a non-zero eigenvector v ∈ V of K such that F.v = 0, then show that the linear
span of v,E.v,E2.v, . . . ,Ee−1.v is a submodule of V. Conclude that this is not possible if V is
irreducible and dim V > e.

(b) If there doesn’t exist any non-zero eigenvector v ∈ V of K such that F.v = 0, then considering
any non-zero eigenvector v ∈ V of K, show that the linear span of v,F.v,F2.v, . . . ,Fe−1.v is a
submodule of V. Conclude that this, too, is impossible if V is irreducible and dim V > e.

(c) Conclude that there are no irreducibleUq(sl2)-modules of dimension greater than e.

Hint for all parts of the exercise: Recall that Ke,Ee,Fe are central by Exercise 49, and remember
also the central element C = EF + 1

(q−q−1)2 (q−1K + qK−1).

Exercise 55 (A family of indecomposableUq(sl2)-modules of dimension e when q is a root of unity)
Consider the Hopf algebraUq(sl2).

(a) Let µ, a, b ∈ C with µ , 0. Show that the following formulas define an e-dimensional
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Uq(sl2)-module with basis w0,w1,w2, . . . ,we−1:

K.w j = µ q−2 j w j for 0 ≤ j ≤ e − 1
F.w j = w j+1 for 0 ≤ j ≤ e − 2

F.we−1 = b w0

E.w j =
(
ab +

[ j]q

q − q−1 (µq1− j
− µ−1q j−1)

)
w j−1 for 1 ≤ j ≤ e − 1

E.w0 = a we−1

Denote this module by We(µ; a, b).

(b) Show that We(µ; a, b) is indecomposable, that is, it can not be written as a direct sum of two
non-zero submodules.

(c) Show that We(µ; a, b) is irreducible unless b = 0 and µ ∈ {±1,±q,±q2, . . . ,±qe−2
}.

(d) Consider the Hopf algebra Ũq(sl2) which is the quotient ofUq(sl2) by the ideal generated by
Ee, Fe and Ke

− 1 (cf. Exercise 49). A Ũq(sl2)-module can be thought of as aUq(sl2)-module,
where Ee, Fe and Ke

− 1 act as zero. Show that a Ũq(sl2)-module V is irreducible if and only
if it is irreducible as aUq(sl2)-module.

(e) Consider the modules Wε
d of Exercise 53, for d < e, and the modules We(µ; a, b). Find all

values of d and ε, and of µ, a, b for which these are irreducible Ũq(sl2)-modules in each of the
following cases:

– when e is odd and qe = +1
(Answer: d anything, ε = +1; a = 0, b = 0, µ = q−1; in fact We(q−1; 0, 0) � W+1

e )

– when e is odd and qe = −1
(Answer: d anything, ε = (−1)d−1; a = 0, b = 0, µ = −q−1; in fact We(−q−1; 0, 0) � W+1

e )

– when e is even
(Answer: d odd, ε anything; no possible values of µ, a, b)

Exercise 56 (A solution of Yang-Baxter equation from two-dimensional Ũq(sl2)-modules)
Assume that e > 1, that e is odd and that qe = +1. The finite dimensional algebra Ũq(sl2) is
generated by E, F, K with relations

KE = q2 EK KF = q−2 FK EF − FE =
1

q − q−1

(
K − K−1

)
Ee = 0 Fe = 0 Ke = 1.

It can be shown that the Hopf algebra Ũq(sl2) is braided with the universal R-matrix

R =
1
e

e−1∑
i, j,k=0

(q − q−1)k

[k]q!
qk(k−1)/2+2k(i− j)−2i j EkKi

⊗ FkK j.

Let V be the two dimensional Ũq(sl2)-module W+1
2 with basis w0,w1 and calculate the matrix of

Ř = SV,V ◦ (ρV ⊗ ρV)(R)

in the basis w0 ⊗ w0, w0 ⊗ w1, w1 ⊗ w0, w1 ⊗ w1.

Hint: In the calculations one encounters expressions of type
∑e−1

t=0 qts, for s ∈ Z, which can be
simplified significantly when q is a root of unity of order e.
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