Assortativity and bidegree distributions on Bernoulli random graph superpositions

Abstract

A probabilistic generative network model with n nodes and m overlapping layers is obtained as a superposition of m mutually independent Bernoulli random graphs of varying size and strength. When n and m are large and of the same order of magnitude, the model admits a sparse limiting regime with a tunable power-law degree distribution and nonvanishing clustering coefficient. This article presents an asymptotic formula for the joint degree distribution of adjacent nodes. This yields a simple analytical formula for the model assortativity, and opens up ways to analyze rank correlation coefficients suitable for random graphs with heavy-tailed degree distributions.