Multilayer hypergraph clustering using the aggregate similarity matrix

Abstract

We consider the community recovery problem on a multilayer variant of the hypergraph stochastic block model (HSBM). Each layer is associated with an independent realization of a d-uniform HSBM on N vertices. Given the aggregated number of hyperedge incident to each pair of vertices, represented using a similarity matrix, the goal is to obtain a partition of the N vertices into disjoint communities. In this work, we investigate a semidefinite programming (SDP) approach and obtain information–theoretic conditions on the model parameters that guarantee exact recovery both in the assortative and the disassortative cases.