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Preface

This text is designed for students in mathematics, statistics, computer sci-
ence, and other disciplines who have taken a first course in probability and
basic courses in calculus. The goal is to walk the student to the deep end
of probability theory in a fast pace, with minimal prerequisites, but still in
a mathematically rigorous manner. Compared to classical textbooks, this
text has more emphasis on probability kernels, density functions with re-
spect to Lebesgue and counting measures, and metrics between probability
measures; and less emphasis on filtrations of sigma-algebras and conditional
expectations defined using sigma-algebras.

For corrections, remarks, and helpful discussions, I would like to thank
Kalle Kytölä, Sari Rogovin, Kalle Alaluusua, Eeli Asikainen, Marcell Berta,
Ruslan Ershov, Aarni Haapaniemi, Ilari Helander, Eero Härmä, Parag Ingle,
Tuomas Juuranto, Konsta Kemppainen, Juho Korkeala, Niko Miller, Vilma
Moilanen, Martin Mäkipää, Aaro Niini, Taneli Pääkkö, Verneri Seppänen,
Konsta Tiilikainen, and Quan Tran. Your comments have much improved
the presentation. The text still under construction and likely to be updated in
the coming years. Further corrections and comments are much appreciated.

Espoo, 21 October 2024
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Notations

Symbol Meaning

Z Integers
Z+ Nonnegative integers
N Strictly positive integers
Z̄+ Z+ ∪ {∞}
Z̄ Z ∪ {−∞} ∪ {∞}
R Real numbers
R+ Nonnegative real numbers
R̄+, [0,∞] R+ ∪ {∞}
R̄, [−∞,∞] R ∪ {−∞} ∪ {∞}
x ∈ A x belongs to A
∅ empty set
A ⊂ B A is a subset of B
Ac complement of A
A ∩B intersection of A and B
A ∪B union of A and B
B \A set difference B ∩Ac

A×B cartesian product of A and B
f(A) image of A by f , {f(x) : x ∈ A}
f−1(A) preimage of A by f , {x : f(x) ∈ A}
A+ h {a+ h : a ∈ A}
1A indicator function of A
{x} singleton set only containing x

x ∧ y minimum of x and y
x ∨ y maximum of x and y
[n] {1, 2, . . . , n}
S sigma-algebra on S
B(R) Borel sigma-algebra on R
σ(C) sigma-algebra generated by C
πi i-th coordinate function

vi
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S1 ⊗ S2 product sigma-algebra

# counting measure
λ, λ(dx), dx Lebesgue measure
λd d-dimensional Lebesgue measure

δx Dirac measure at x
Ber(p) Bernoulli distribution with parameter p
Poi(a) Poisson distribution with parameter a
Nor(0, 1) standard normal distribution

P probability measure
E expectation

µ(f),
∫
f dµ,

∫
f(x)µ(dx) integral of f against µ

L1(µ) integrable functions against µ
Lp(µ) power-integrable functions of order p against µ

P(S) probability measures on S
Pp(R) probability measures on R with finite p-th moments
µ⊗ ν product of measures µ and ν
µ⊗K product of measure µ and kernel K
µK pushforward of measure µ by kernel K

dtv total variation distance
Wp Wasserstein distance of order p



Chapter 1

Probabilities and measures

Die Wahrscheinlichkeitstheorie als mathematische
Disziplin soll und kann genau in demselben Sinne
axiomatisiert werden wie die Geometrie oder die Algebra.

—Andrey Kolmogorov

The theory of probability is written in the language of measure theory in
which sets represent events, and measures assign numbers to sets correspond-
ing to probabilities of events. Uncountably infinite spaces contain sets for
which we cannot assign probabilities in a meaningful manner. This is why
we restrict to set families that are small enough to rule out unnecessary
pathologies, and large enough to be closed under set operations correspond-
ing to logical connectives of events. Such families are called sigma-algebras.

Key concepts: Measure, sigma-algebra, indicator function, monotone set
limit, probability mass function, Dirac measure

Learning outcomes:

• Get familiar with abstract sums
∑

x∈A f(x) over finite and countably
infinite sets.

• Get introduced to working with basic arithmetic operations (sum, prod-
uct) and analytic concepts (limits, sums of series) on [0,∞].

• Learn to construct discrete probability measures using probability mass
functions and Dirac measures.

Prerequisites: Set union, set intersection, countable set, infinite sum

1



CHAPTER 1. PROBABILITIES AND MEASURES 2

1.1 Set operations

A set S is an unordered collection of objects called the members of S. We
denote x ∈ S if x is a member of S. We denote A ⊂ B and say that A is a
subset of B if every member of A is also a member of B. The empty set is
denoted by ∅. The indicator function of a set A is defined by

1A(x) =

{
1 if x ∈ A,
0 else.

(1.1)

� The indicator function 1A uniquely characterises the set A. Indicator
functions provide an important bridge between sets and functions that is
constantly used in probability theory.

For subsets A and B of S, we define the set operations intersection, union,
difference, and complement by

A ∩B = {x ∈ S : x ∈ A and x ∈ B},
A ∪B = {x ∈ S : x ∈ A or x ∈ B},
B \ A = {x ∈ S : x ∈ B and x /∈ A},

Ac = {x ∈ S : x /∈ A}.

Exercise 1.14 helps to understand the interplay between indicator functions
and intersections and unions.

A set family on S is a set of subsets of a ground set S. A set family is
often denoted by {Ai : i ∈ I} with the understanding that we associate to
each i ∈ I a set Ai ⊂ S. In this case we say that the set family is indexed
by I. The members of {Ai : i ∈ I} are mutually disjoint if Ai ∩ Aj = ∅ for
all i ̸= j.

� A set family is a set of sets. The members of a disjoint set family do
not overlap each other.

A set is countable if it can be enumerated as A = {x1, x2, . . . } using a
finite or infinite ordered list x1, x2, . . . In the former case the set is called
finite, and in the latter case countably infinite. The intersection and the
union of a set family {Ai : i ∈ I} are denoted by⋂

i∈I

Ai = {x ∈ S : x ∈ Ai for all i ∈ I},⋃
i∈I

Ai = {x ∈ S : x ∈ Ai for some i ∈ I}.
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A set family {Ai : i ∈ I} is countable if its index set I is countable. We write
∩i∈I = ∩∞i=1 and ∪i∈I = ∪∞i=1 when the index set equals the set of positive
integers. The following results (Exercise 1.13) are known as De Morgan’s
laws1: (⋂

i∈I

Ai

)c

=
⋃
i∈I

Ac
i , (1.2)(⋃

i∈I

Ai

)c

=
⋂
i∈I

Ac
i . (1.3)

� De Morgan’s laws are useful tools that allow us to switch from sets to
their complements when analysing intersection and unions.

1.2 Sigma-algebras

A sigma-algebra is a set family S on S that contains ∅, S, and is closed under
complement, countable union, and countable intersection:

(i) A ∈ S =⇒ Ac ∈ S.

(ii) A1, A2, . . . ∈ S =⇒ A1 ∪ A2 ∪ · · · ∈ S.

(iii) A1, A2, . . . ∈ S =⇒ A1 ∩ A2 ∩ · · · ∈ S.

The members of a sigma-algebra are called measurable sets . A set equipped
with a sigma-algebra is denoted (S,S) and called a measurable space. Two
fundamental examples of sigma-algebras are given below. Exercise 1.15 pro-
vides further examples and non-examples.

Example 1.1. The trivial sigma-algebra on S is the set family {∅, S}. This
is the smallest possible sigma-algebra that one can construct on a given set.

Example 1.2. The discrete sigma-algebra on S, denoted 2S, is the set family
consisting of all subsets of S. This is the largest possible sigma-algebra that
one can construct on a given set. A discrete measurable space is a pair (S, 2S)
in which S is a countable set.

1Named after a British mathematician Augustus De Morgan (1806–1871).
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� The discrete sigma-algebra provides a natural framework for a countable
space, but is too large to be useful for uncountably infinite spaces.

Set families are commonly encountered in many areas of mathematics.
A topological space is a set equipped with a family of sets called open sets .
The set family of a topological space is closed under finite intersections and
arbitrary unions. A hypergraph is a (usually finite) set equipped with a
structure-free family of sets called hyperedges . Table 1.1 summarises these
concepts.

(S,S) Measurable space Topological space Hypergraph

S called Ground set Space Node set
S called Sigma-algebra Topology Hyperedge set

x ∈ S called Point, outcome Point Node, vertex
A ∈ S called Measurable set Open set Hyperedge

S contains ∅ Yes Yes No
S contains S Yes Yes No
S closed under ( )c Yes No No
S closed under ∩ Countable Finite No
S closed under ∪ Countable Any No

Table 1.1: Comparison of set-theoretical structures.

1.3 Measures

A measure on a measurable space (S,S) is a map µ : S → [0,∞] which
satisfies µ(∅) = 0 and is countably disjointly additive2 in the sense that3

µ
( ⋃

n≥1

An

)
=
∑
n≥1

µ(An) (1.4)

for any finite or countably infinite list of mutually disjoint sets A1, A2, · · · ∈ S.
A measure is finite if µ(S) < ∞. A probability measure is a measure with
µ(S) = 1. When the sigma-algebra is assumed clear from the context, we
say that µ is a measure on S.

2aka sigma-additive
3On the right side of (1.4) we work with the extended half line with the conventions

that x+∞ =∞ and 0 · x = 0 for all x ∈ [0,∞]. Appendix A provides more details.
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� Measures are functions that map sets into [0,∞]. A measure can be
considered as a method to quantify the size of a set so that the size of the
empty set is zero, and the sizes of disjoint sets add up.

Example 1.3. The Dirac measure at a point x ∈ S in a measurable space
(S,S) is a function δx : S → [0,∞] defined by

δx(A) =

{
1, x ∈ A,
0, else.

To see that δx is countably disjointly additive, assume that A1, A2, · · · ∈ S
are mutually disjoint and consider the following cases:

(i) If δx(∪n≥1An) = 0, then x /∈ ∪n≥1An, which means that x does not
belong to any of the sets An. We find that δx(An) = 0 for all n.
Therefore,

∑
n≥1 δx(An) = 0, and (1.4) is valid.

(ii) If δx(∪n≥1An) = 1, then x ∈ ∪n≥1An implies that x ∈ Ak for some k.
Because the sets A1, A2, . . . are disjoint, we also see that x /∈ An for
all n ̸= k. Therefore, δx(Ak) = 1 and δx(An) = 0 for all n ̸= k. Hence∑

n≥1 δx(An) = 1, and (1.4) is again valid.

We have thus seen that δx is a countably disjointly additive set function.
Because δx(∅) = 0, it follows that δx is a measure. Because δx(S) = 1, we
conclude that δx is a probability measure.

� The Dirac measure is a simple concept when viewed as a set function,
instead of trying to represent it as an ordinary function. Dirac measures
serve as important building blocks in constructing other probability mea-
sures.

There are lots of further examples of probability measures—in fact all
probability distributions are probability measures. Examples of infinite mea-
sures include the counting measure on the integer lattice Z, and the Lebesgue
measure on the real line R. We will soon properly define these. In the mean-
time, Exercise 1.16 provides further examples and non-examples.

1.4 Monotone continuity of measures

The countable disjoint additivity, included as a defining feature of a measure,
encodes important monotonicity and continuity properties that we will state
and prove in this section.
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� Monotonicity corresponds to our intuition about the measure of a set
describing its size: any set that is fully contained inside another set must
have a smaller size than the other.

Proposition 1.4 (Monotonicity). Every measure µ is monotone in the
sense that for all measurable sets: A ⊂ B =⇒ µ(A) ≤ µ(B).

Proof. Fix a measure µ on a measurable space (S,S). Fix A,B ∈ S such
that A ⊂ B. We may express B = A ∪ (B \ A) as a union of disjoint sets,
where by writing B \A = B∩Ac we see that also the latter set belongs to the
sigma-algebra S. The disjoint additivity (1.4) and nonnegativity of µ then
imply that

µ(B) = µ(A ∪ (B \ A)) = µ(A) + µ(B \ A) ≥ µ(A).

Measures also admit important continuity properties with respect to mono-
tone set limits indicated by:

(i) An ↑ A if A1 ⊂ A2 ⊂ · · · and ∪n≥1An = A.

(ii) An ↓ A if A1 ⊃ A2 ⊃ · · · and ∩n≥1An = A.

We use similar notations for monotone limits in [0,∞], so that xn ↑ x means
that x1 ≤ x2 ≤ · · · and limn→∞ xn = x. The following important result
summarises the monotone continuity of measures. Exercise 1.17 helps to
develop intuition on set limits.

� Set limits share some features in common with number limits, but are
quite different in certain aspects. For example, no ϵ nor δ are needed to
define a set limit.

Proposition 1.5 (Monotone continuity). Every measure µ is continuous
under monotone set limits in the sense that for any measurable sets:

(i) An ↑ A =⇒ µ(An) ↑ µ(A).

(ii) An ↓ A and µ(A1) <∞ =⇒ µ(An) ↓ µ(A).
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Proof. (i) Consider measurable sets such that An ↑ A. In analogy with the
geological cross section of the Earth, we shall regard the set An as a body
composed of layers defined by B1 = A1, B2 = A2 \ A1, B3 = A3 \ A2, and
so on. Then we see that An = B1 ∪ · · · ∪ Bn where the sets B1, . . . , Bn ∈ S
are mutually disjoint and belong to S. Disjoint additivity (1.4) then implies
that

µ(An) =
n∑

k=1

µ(Bk).

The summands on the right side above are nonnegative, and therefore the
right side converges monotonically to the infinite sum

∑∞
k=1 µ(Bk) as n→∞.

We conclude that

µ(An) ↑
∞∑
k=1

µ(Bk). (1.5)

Next, a moment’s reflection reveals that
⋃∞

k=1Ak =
⋃∞

k=1Bk. Then by ap-
plying (1.4) to the infinite union of disjoint sets B1, B2, . . . , we find that

µ(A) = µ
( ∞⋃

k=1

Ak

)
= µ

( ∞⋃
k=1

Bk

)
=

∞∑
k=1

µ(Bk).

Claim (i) follows by combining the above equality with (1.5).
(ii) Consider measurable sets An ↓ A such that µ(A1) < ∞. Denote

Bn = A1 \An and B = A1 \A. By writing A1 = An∪Bn = A∪B and noting
that both these unions are disjoint, we see that

µ(A1) = µ(An) + µ(Bn) = µ(A) + µ(B).

Because µ(A1) < ∞, we see that all terms in the above equality are finite,
and therefore,

µ(An) = µ(A1)− µ(Bn),

µ(A) = µ(A1)− µ(B).

Then we observe that Bn ↑ B, so that µ(Bn) → µ(B) by (i). We conclude
that

lim
n→∞

µ(An) = lim
n→∞

(
µ(A1)− µ(Bn)

)
= µ(A1)− lim

n→∞
µ(Bn)

= µ(A1)− µ(B)

= µ(A).

Monotonicity (Proposition 1.4) now implies that µ(An) ↓ µ(A).

The following result is also known as the union bound .
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Proposition 1.6 (Subadditivity). Every measure µ is countably subaddi-
tive in the sense that µ(∪n≥1An) ≤

∑
n≥1 µ(An) for any finite or countably

infinite list of measurable sets.

Proof. Monotonicity (Proposition 1.4) implies that for all measurable sets A
and B,

µ(A ∪B) = µ(A ∪ (B \ A)) = µ(A) + µ(B \ A) ≤ µ(A) + µ(B).

By induction it follows that

µ
( n⋃

k=1

Ak

)
≤

n∑
k=1

µ(Ak). (1.6)

Let us extend (1.6) into infinite lists of sets. Denote Cn = ∪nk=1Ak and
C = ∪∞k=1Ak. Then Cn ↑ C, and monotone continuity (Proposition 1.5)
implies that µ(Cn) ↑ µ(C). On other hand, (1.6) implies that µ(Cn) ≤ c for
all n, where c =

∑∞
k=1 µ(Ak).

1.5 Sums of measures

The sum of measures µ and ν on (S,S) is a set function µ+ ν defined by the
formula

(µ+ ν)(A) = µ(A) + ν(A), (1.7)

and the scalar multiplication of a measure by a constant c ∈ [0,∞] is a set
function cµ defined by

(cµ)(A) = cµ(A). (1.8)

The following result implies that µ + ν and cµ are measures. Therefore,
the space of measures on (S,S) is closed under linear combinations with
nonnegative weights. Remarkably, the result is valid equally well for finite
and countably infinite linear combinations.

� New measures may be constructed from old measures by taking linear
combinations. Any nonzero finite measure may be normalised to a proba-
bility measure by scalar multiplication.

Proposition 1.7 (Weighted sums of measures are measures). Let µ1, µ2, . . .
be measures on (S,S), and let c1, c2, · · · ∈ [0,∞]. Then

(i) µ =
∑∞

k=1 ckµk is a measure on (S,S).
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(ii) µ =
∑∞

k=1 ckµk is a probability measure if µ1, µ2, . . . are probability
measures and

∑∞
k=1 ck = 1.

Proof. (i) Because µ(A) =
∑∞

k=1 ckµk(A) ∈ [0,∞] for all A ∈ S, we see that
µ is a set function from S onto [0,∞]. Let us verify that µ is countably
disjointly additive. Fix disjoint measurable sets A1, A2, . . . Because µk is
countably disjointly additive, we know that

µk(∪∞i=1Ai) =
∞∑
i=1

µk(Ai).

Therefore,

µ(∪∞i=1Ai) =
∞∑
k=1

ckµk(∪∞
i=1Ai) =

∞∑
k=1

∞∑
i=1

ckµk(Ai).

Because the order of a double sum with terms in [0,∞] can be always be
swapped (Lemma A.11), it follows that

µ(∪∞i=1Ai) =
∞∑
i=1

∞∑
k=1

ckµk(Ai) =
∞∑
i=1

µ(Ai).

(ii) Assume that µ1, µ2, . . . are probability measures and
∑∞

k=1 ck = 1.
Part (i) then confirms that µ is a measure. Because µk(S) = 1 for all k, we
find that

µ(S) =
∞∑
k=1

ckµk(S) =
∞∑
k=1

ck = 1.

Therefore, µ is a probability measure.

1.6 Discrete probability spaces

Probability measures on countable spaces can be conveniently represented
and handled using probability mass functions. A probability mass function
on S is a function f : S → [0, 1] such that

∑
x∈S f(x) = 1. Here we adopt

the abstract sum notation ∑
x∈A

f(x) =
∑
k≥1

f(xk)

where A = {x1, x2, . . . } is an arbitrary enumeration of a countable set A
using a sequence of distinct elements. This convention is justified by the fact
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that finite and countably infinite sums of elements in [0,∞] are insensitive
to the order of summation (see Lemma A.9).

The probability mass function of a probability measure P is defined by
fP (x) = P ({x}). The following result confirms that fP is a proper probability
mass function as defined above, and that all values of P can be computed
using fP .

� Probability measures on discrete spaces can be equivalently represented
as probability mass functions.

Proposition 1.8. Let P be a probability measure on (S, 2S) in which S is
countable. Then fP (x) = P ({x}) is a probability mass function on S, and

P (A) =
∑
x∈A

fP (x) for all A ⊂ S. (1.9)

Proof. Fix a set A ⊂ S. Assume that A is countably infinite (the finite case is
easy). We note that fP (x) = P ({x}) ≥ 0 for all x. Fix an enumeration A =
{x1, x2, . . . }. Then the sets Ai = {xi} are disjoint and such that ∪∞i=1Ai = A.
Hence

P (A) = P (∪∞i=1Ai) =
∞∑
i=1

P (Ai) =
∞∑
i=1

fP (xi) =
∑
x∈A

fP (x).

Hence (1.9) holds for all A ⊂ S. By plugging in A = S, we find that∑
x∈S fP (x) = P (S) = 1, so we conclude that fP is a probability mass

function.

Proposition 1.9. Let f be a probability mass function on a countable set
S. Then the formula

P (A) =
∑
x∈A

f(x)

defines a probability measure on (S, 2S) with probability mass function fP =
f .

Proof. Obviously P (A) ≥ 0 for all A ⊂ S. Hence all we need to do is to
verify that P is countably disjointly additive, which in this case is equivalent
to ∑

x∈∪∞
i=1Ai

f(x) =
∞∑
i=1

∑
x∈Ai

f(x). (1.10)
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Even though (1.10) appears intuitively plausible, verifying it directly is com-
plicated if we try to keep track of enumerations of the (possibly infinite) sets
Ai for each i. An alternative, more elegant proof is based on observing that

P (A) =
∑
x∈A

f(x) =
∑
x∈S

1A(x)f(x),

in which 1A is the indicator function defined in (1.1). Next, we observe
that 1A(x) = δx(A) where δx is the Dirac measure at x. Let us now fix an
enumeration S = {x1, x2, . . . }. Then

P (A) =
∑
x∈S

1A(x) f(x) =
∑
x∈S

f(x)δx(A) =
∞∑
k=1

f(xk) δxk
(A).

From this equation we recognise that P =
∑∞

k=1 ckµk is a sum of Dirac
measures µk = δxk

weighted by ck = f(xk) ∈ [0, 1]. Because

∞∑
k=1

ck =
∞∑
k=1

f(xk) =
∑
x∈S

f(x) = 1,

we may conclude with the help of Proposition 1.7 that P is a probability
measure.

Finally, we note that fP (y) = P ({y}) =
∑

x∈{y} f(x) = f(y) for all y ∈ S,
so that the probability mass function of P equals f .

Example 1.10 (Dirac measure). We say in Example 1.3 that the Dirac
measure δb at point b ∈ S is a probability measure. Its probability mass
function is given by

fδb(x) =

{
1, x = b,

0, else.

Example 1.11 (Binomial distribution). Fix an integer n ≥ 1 and a number
p ∈ [0, 1]. Define a function on Z+ by

f(k) =

{(
n
k

)
(1− p)n−kpk, k ∈ {0, . . . , n},

0, else.

With the help of the binomial sum formula (a + b)n =
∑n

k=0

(
n
k

)
an−kbk we

find that
∞∑
k=0

f(k) =
n∑

k=0

(
n

k

)
(1− p)n−kpk =

(
(1− p) + p

)n
= 1.

Hence f is a probability mass function that defines a probability measure on
(Z+, 2

Z+). This probability measure is called the binomial distribution with
trial count n and success probability p.
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Example 1.12 (Poisson distribution). The Poisson distribution with mean
λ ∈ (0,∞) is the probability measure on (Z+, 2

Z+) with probability mass
function

f(k) = e−λλ
k

k!
, k = 0, 1, . . .

By applying the power series representation eλ =
∑∞

k=0
λk

k!
of the exponential

function, we may check that
∑∞

k=0 f(k) = 1.

1.7 Exercises

Exercise 1.13 (De Morgan’s laws). Prove formulas (1.2)–(1.3).

Exercise 1.14 (Indicator functions). Are the following statements true or
false in general for all subsets of a set S? Prove the statement true or find a
counterexample.

(a) 1A∩B(x) = 1A(x)1B(x) for all x ∈ S.

(b) 1A∪B(x) = 1A(x) + 1B(x) for all x ∈ S.

Exercise 1.15 (Sigma-algebras or not). Which of the following set families
are sigma-algebras on the set S = {1, 2, 3}:

S1 = {∅, {1, 2, 3}}, S2 = {{1}, {2}, {3}}, S3 = {∅, {1}, {2, 3}} ?

Exercise 1.16 (Measures and non-measures). Which of the following set
functions are measures on Z+ = {0, 1, 2, . . . }? Explain your answer rigor-
ously.

µ1(A) = 0 for all A,

µ2(A) = number of the elements in A,

µ3(A) = maximum of the elements in A,

µ4(A) = sum of the elements in A,

µ5(A) = ∞ for all A.

Exercise 1.17 (Monotone set limits). Prove that the following statements
are true in general for all subsets of a set S:

(a) A ⊂ B if and only if 1A(x) ≤ 1B(x) for all x ∈ S.

(b) An ↑ A if and only if 1An(x) ↑ 1A(x) for all x ∈ S.
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Exercise 1.18 (Impossible and sure events). Let P be a probability measure
on a measurable space (S,S).

(a) Consider an infinite list of measurable sets A1, A2, . . . for which P (An) =
0 for all n ≥ 1. Prove that P (∪∞n=1An) = 0.

(b) Consider an infinite list of measurable sets A1, A2, . . . for which P (An) =
1 for all n ≥ 1. Prove that P (∩∞n=1An) = 1.

1.8 Historical notes

First notions of mathematical probabilities date back to Gerolamo Cardano’s
investigations in 1560s on the sum of three dice, and Blaise Pascal’s and
Pierre de Fermat’s studies on gambling (random walks) that inspired Chris-
tiaan Huygens to write an article in 1657 that may be considered the first
scientific publication in probability theory. Preliminary versions of key theo-
rems in probability theory and mathematical statistics were derived by sev-
eral authors in the 18th and 19th centuries. However, the rigorous formula-
tion of modern probability theory had to wait until the birth of measure and
integration theory.

The foundations of measure theory based on sigma-algebras were devel-
oped by Émile Borel in the end of the 19th century, and the foundations of
modern integration theory were introduced in Henri Lebesgue’s PhD thesis
in 1902, supervised by Borel. Maurice Fréchet in 1915 noted that Borel’s
and Lebesgue’s measure and integration theory can be cast in an abstract
measurable space. Finally, in 1933 Andrey Kolmogorov published his text-
book masterpiece [Kol33] where he condensed the developments of the early
20th century into a general abstract definition of a probability measure as
presented in Section 1.3. See [Kal02, SV06] for nice historical accounts.



Chapter 2

Uniform distributions

Les domaines et les ensembles sont aux fonctions ce que
les tissus sont aux êtres vivants.

—Émile Borel

A uniform probability distribution represents complete randomness in
which all outcomes are equally likely. Uniform probability distributions are
easy to describe for finite sets, but not so for the continuum. The problem
is that the real line contains complicated sets for which it is impossible to
define any reasonable notion of size. The solution is to give up trying to
assign probabilities to all subsets of the real line. Instead, we shall restrict to
a sigma-algebra that is big enough to contain all sets of practical relevance,
and small enough to rule out pathological cases that lead to complications.
To understand this approach, we need to dig a bit deeper into measure theory
and to get introduced to generators of sigma-algebras.

Key concepts: generator of a sigma-algebra, Borel set, counting measure,
Lebesgue measure, cumulative distribution function

Learning outcomes:

• Get introduced to working with generators of a sigma-algebra.

• Become familiar with uniform distributions on finite sets and bounded
subsets of the real line.

• Learn to recognise sets of Lebesgue measure zero.

Prerequisites: Open and closed subsets of the real line.

14
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2.1 Discrete uniform distribution

The counting measure on a measurable space (S,S) is a set function #: S →
[0,∞] defined by

#(A) = number of elements in A ⊂ S. (2.1)

Proposition 2.1. The counting measure is a measure.

Proof. Because #(∅) = 0, we only need to verify that

#
( ⋃

n≥1

An

)
=
∑
n≥1

#(An) (2.2)

for any finite or countably infinite list of mutually disjoint sets A1, A2, · · · ∈ S.
If #(An) =∞ for some n, then (2.2) immediately holds with both sides being
infinite.

Let us next consider the case in which the sets A1, A2, · · · ∈ S are finite.
Then the set S0 =

⋃
n≥1An is countable. The number of elements in any

measurable set A ⊂ S0 can be represented as

#(A) =
∑
x∈S0

δx(A) = ν(A),

where ν =
∑

x∈S0
δx. Because each Dirac measure δx is a measure (recall

Example 1.3), Proposition 1.7 implies that ν is a measure. In particular, ν
countably disjointly additive, and it follows that

#
( ⋃

n≥1

An

)
= ν

( ⋃
n≥1

An

)
=
∑
n≥1

ν(An) =
∑
n≥1

#(An).

Let C ∈ S be a finite nonempty set in a measurable space (S,S). The
uniform distribution on C is a set function defined by

µ(A) =
#(A ∩ C)

#(C)
, A ∈ S. (2.3)

Proposition 2.2. The uniform distribution defined by (2.3) is a probability
measure on (S,S).

Proof. Exercise 2.10.
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2.2 In search of a good sigma-algebra on R
The real line contains pathological sets for which it is impossible to assign
probabilities in a meaningful way. Therefore, the discrete sigma-algebra 2R

is not suitable for probability theory. We would like to construct a smaller
sigma-algebra on R that still contains sets of practical relevance. One option
is to rule out the problematic sets of 2R. This is hard because it is hard
to systematically describe all problematic sets. An alternative, economical
approach is to start with a minimum set family that needs to be contained
in the sigma-algebra, and enlarge it.

In the minimal approach, we want all open sets to be measurable. Let

S1 = {open sets in R}.

Is this a sigma-algebra? No, because for example the complement of the open
set (0, 1) is not open. Any sigma-algebra containing all the open sets must
hence be larger than S1. Let us try to enlarge this. Define

S2 = {open sets in R} ∪ {closed sets in R}.

Is S2 a sigma-algebra? No, because for example the countable union of closed
sets [0, 1

2
]∪ [0, 2

3
]∪ [0, 3

4
]∪ · · · = [0, 1) is not open nor closed. We could try to

enlarge this by defining

S3 = {countable unions of sets in S2}.

It is possible to check that S3 is still not a sigma-algebra. We should enlarge
this by adding countable intersections of sets in S3, but unfortunately this
type of recursive algorithm would not finish in a finite number of iterations.
We will next develop an alternative, indirect approach.

� The set family of open sets in R is not a sigma-algebra. There is no
simple direct way to enlarge the set family of open sets into a sigma-algebra.

2.3 Generators of sigma-algebras

The sigma-algebra σ(C) generated by a set family C on S is defined as the
smallest sigma-algebra on S containing all members of C. More precisely, we
define

σ(C) =
⋂
i

Fi, (2.4)



CHAPTER 2. UNIFORM DISTRIBUTIONS 17

where the intersection on the right is takes over all sigma-algebras on S that
contain C. The following results confirms that the right side of (2.4) is a
sigma-algebra, so that above definition makes sense. A set family C is called
a generator of sigma-algebra F when F = σ(C).

Proposition 2.3. The intersection ∩Fi of sigma-algebras Fi on S is a
sigma-algebra on S.

Proof. (i) Because each Fi is a sigma-algebra, we see that S ∈ Fi for all i.
The latter property means that S ∈ ∩iFi. A similar argument confirms that
∅ ∈ ∩iFi.

(ii) Assume that A ∈ ∩Fi. Then A ∈ Fi for all i. Because each Fi is a
sigma-algebra, we see that Ac ∈ Fi for all i. But this means that Ac ∈ ∩Fi.

(iii) Assume that A1, A2, · · · ∈ ∩Fi. Then An ∈ Fi for all i and n. Because
each Fi is sigma-algebra, it follows that ∪nAn ∈ Fi and ∩nAn ∈ Fi for all i.
We conclude that ∪nAn ∈ F and ∩nAn ∈ F .

� Any set family C may be extended to a sigma-algebra σ(C). This is
how sigma-algebras are usually defined.

Note the analogy with linear algebra.

� Any set of vectors C = {v1, . . . , vn} may be extended to a vector space
span(C).

2.4 Borel sigma-algebra on the real line

The Borel sigma-algebra1

B(R) = σ(open sets in R)

is defined as the smallest sigma-algebra on R containing all open sets of R.
The members of B(R) are called Borel sets . By definition, all open sets
are Borel sets. Because B(R) is a sigma-algebra, and sigma-algebras are by
definition closed with respect to taking complements, we see that all closed
sets are Borel sets as well. We also see that all members of the set families
constructed in Section 2.2 are Borel sets. In addition, B(R) contains many
more sets—in fact essentially all sets of practical interest.

1Named after Émile Borel (1871–1956). PhD 1893 @ École Normale Superieure for
Jean-Gaston Darboux.
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Indeed, it is not easy to write down a subset of R that is not a Borel set.
Neither there exists a simple recipe for constructively describing all Borel
sets. Luckily, it is often sufficient to work with a generator of the sigma-
algebra, instead of all members. Especially, to work with B(R), it usually
suffices to consider the open sets.

The following important result shows that the Borel sigma-algebra can
also be generated by a much simpler set family than the family of all open
sets of R. Indeed, most sigma-algebras admit lots of different generators.

� Sigma-algebras typically have several generators. For example, the
Borel sigma-algebra B(R) is generated by both the family of open sets, and
the family of intervals (−∞, x].

Note the analogy with linear algebra.

� Vector spaces typically have several bases.

Proposition 2.4. The set family C = {(−∞, x] : x ∈ R} is a generator of
B(R).

Proof. The prove the claim, it suffices to verify that the sigma-algebra σ(C)
generated by C satisfes (i) σ(C) ⊂ B(R) and (ii) σ(C) ⊃ B(R).

(i) To show that σ(C) ⊂ B(R), we will first show that C ⊂ B(R). To
do this, we note that every interval (−∞, x] is the complement of an open
set (x,∞), and that B(R) by definition contains all open sets of R. Hence
C ⊂ B(R). We conclude that B(R) is a sigma-algebra containing the set
family C. By definition, σ(C) is the smallest sigma-algebra with this property.
Therefore, σ(C) ⊂ B(R).

(ii) To show that σ(C) ⊃ B(R), we will first show that σ(C) contains all
open sets of R. We proceed step-by-step to show that σ(C) contains:

(a) all semi-open intervals of the form (x, y],

(b) all open intervals of the form (x, z),

(c) all open sets V ⊂ R.

For (a), we note that

(x, y] = (−∞, y] \ (−∞, x] = (−∞, y] ∩ (−∞, x]c.

We see that (x, y] is from members of C by complements and countable
(indeed, finite) intersections. Therefore, (x, y] ∈ σ(C).
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For (b), we note that

(x, z) = ∪∞n=1(x, z − 1/n]

shows that (x, z) is obtained from a countable union of intervals of type (a).
Because intervals of type (a) belong to σ(C), so does the interval (x, z).

For (c), we note that every open set V of R can be written as a countable
union of open intervals of type (b). Because intervals of type (b) belong to
σ(C), so does the set V .

We conclude that σ(C) is a sigma-algebra containing the open sets of R.
By definition, B(R) is the smallest such sigma-algebra. Therefore σ(C) ⊃
B(R).

2.5 The uniform measure on the real line

Intuitively, the probability that a uniformly sampled random number is con-
tained in a set A should be not depend on the location or orientation of the
set, but only on its size. But how to define the size of a set? It is natural
to require that the size of a disjoint union of sets be equal to the sum of the
sizes of the constituent sets. This means that the size should be a measure.
But how do we define such a measure, and does such a measure exist?

The uniformity of a measure intuitively means that the measure of a set
does not change if we shift the set in space. The shift of a set A ⊂ R by
h ∈ R is denoted by

A+ h = {a+ h : a ∈ A}.
A measure µ on (R,B(R)) is called shift invariant if µ(A + h) = µ(A) for
all Borel sets A ⊂ R and all h ∈ R. The following result confirms that
there exists a shift-variant measure on the real line which is unique up to a
normalisation.

Theorem 2.5. There exists a unique shift-invariant measure λ on (R,B(R))
such that λ([0, 1]) = 1.

Proof. This famous result was first recognised by Borel in 1895–1898. The
proof has two parts: existence and uniqueness.

(i) For the existence, most modern proofs utilise Carathéodory’s2 exten-
sion theorem from 1918. Readers more interested in applications of proba-
bility theory than real analysis may skip the proof. A concise but rigorous
proof is available for example in [Kal02, Theorem 2.2].

2Constantin Carathéodory, 1873–1950. PhD 1904 @ University of Göttingen for Her-
mann Minkowski.



CHAPTER 2. UNIFORM DISTRIBUTIONS 20

(ii) The uniqueness can by done by applying Dynkin’s identification the-
orem in Section 2.6. See Exercise 2.15.

The Lebesgue measure3 is the unique shift-invariant measure λ on (R,B(R))
such that λ([0, 1]) = 1, which is well defined due to Theorem 2.5.

Proposition 2.6. The Lebesgue measure on (R,B(R)) satisfies:

(i) λ({x}) = 0 for all x.

(ii) λ([a, b]) = b− a for all a ≤ b.

(iii) λ(R) =∞.

� The Lebesgue measure of an interval equals the length of the interval. In
this way, the Lebesgue measure extends the concept of length from intervals
to arbitrary Borel sets.

Proof. By noting that the intervals
[
0, 1

n

)
,
[
1
n
, 2
n

)
,
[
2
n
, 3
n

)
. . . , are disjoint, we

see by applying shift invariance that

λ
([

0, m
n

))
= λ

( m⋃
k=1

[
k−1
n
, k
n

))
=

m∑
k=1

λ
([

k−1
n
, k
n

))
= mλ

([
0, 1

n

))
(2.5)

Equality (2.5) for m = n implies that

λ
([

0, 1
n

))
= 1

n
λ
(
[0, 1)

)
. (2.6)

The assumption λ([0, 1]) = 1 combined with monotonicity (Proposition 1.4)
implies that λ

(
[0, 1

n
)
)
≤ 1

n
. The monotone continuity of measures (Proposi-

tion 1.5) then implies that

0 ≤ λ({0}) = λ

( ∞⋂
n=1

[
0, 1

n

))
= lim

n→∞
λ
([

0, 1
n

))
≤ lim

n→∞
1
n

= 0.

Therefore λ({0}) = 0, and claim (i) follows by shift invariance.
Due to (i), we see that λ([0, 1)) = λ([0, 1]) = 1. Then (2.6) implies

that λ
([

0, 1
n

))
= 1

n
. By substituting this back to (2.5), we conclude that

λ
([

0, m
n

))
= m

n
, in other words,

λ
(
[0, q)

)
= q for all rational numbers q > 0. (2.7)

3Named after Henri Lebesgue (1875–1941). PhD 1902 @ Nancy for Émile Borel.
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We may extend (2.7) to an arbitrary real number x > 0 as follows. Select a
sequence of positive rational numbers such that qn ↑ x. Then [0, qn) ↑ [0, x),
and the monotone continuity of measures combined with (2.7) implies that

λ
([

0, x
))

= lim
n→∞

λ
([

0, qn
))

= lim
n→∞

qn = x.

Because λ({b}) = 0, it follows by shift invariance that λ([a, b]) = λ([a, b)) =
λ([0, b− a)) = b− a for all a ≤ b. This confirms (ii).

Finally, by the monotone continuity of measures, λ(R) = λ(∪∞n=1[−n, n]) =
limn→∞ λ([−n, n]) = limn→∞ 2n =∞. Hence (iii) is true.

� The Lebesgue measure λ on R and the counting measure # on Z are
analogous. The former is the uniform measure on the continuum, and the
latter is the uniform measure on the discrete integer lattice.

2.6 Identification of measures

The following result is attributed to Eugene Dynkin45.

Theorem 2.7 (Dynkin’s identification theorem). Let C be a generator
of S that is closed under pairwise intersection. Then for any probability
measures on (S,S):

µ = ν if and only if µ(A) = ν(A) for all A ∈ C. (2.8)

� Any probability measure on (S,S) is uniquely identified by its values
on any particular generator of S that is closed under pairwise intersection.

The proof of Theorem 2.7 is based on a monotone class argument that
utilises the following fundamental set-theoretic result. A set family D on S is
called a Dynkin class6 if it contains S and is closed under subset difference7

and increasing set limit8.

4Eugene Dynkin (1924–2014). PhD 1948 @ Moscow State University for Kolmogorov.
5A set family that is closed under pairwise intersection is sometimes called a π-system.
6aka Dynkin system, λ-system
7A1, A2 ∈ D, A1 ⊂ A2 =⇒ A2 \A1 ∈ D.
8A1, A2, · · · ∈ D, A1 ⊂ A2 ⊂ · · · =⇒ ∪nAn ∈ D.
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Theorem 2.8 (Monotone class theorem). If C is a set family that is closed
under pairwise intersection and generates a sigma-algebra S, then every
Dynkin class containing C also contains S.

� A monotone-class argument is a proof technique for verifying that a
certain property P is valid for all sets in a sigma-algebra S.

1. Verify that property P holds for all members of a generator of S that
is closed under pairwise intersection.

2. Verify that D = {sets in S having property P} forms a Dynkin class.

3. Apply Theorem 2.8 to conclude that D ⊃ S, so that indeed D = S,
and therefore all members of S have property P .

The purely set-theoretic proof of the monotone class theorem can be
skipped without missing important insights in probabilistic thinking. For
the curious reader, the proof is given in Appendix B.

Proof of Theorem 2.7. Let C be a generator of S that is closed under pairwise
intersection. We will prove the forward implication in (2.8) (the converse is
trivial). Let µ, ν be probability measures on (S,S) such that

µ(A) = ν(A) for all A ∈ C. (2.9)

We will prove that µ = ν by showing that (2.9) holds for all A ∈ S.
The proof strategy, known as a monotone-class argument, is to represent

the collection of sets that have the desired property as a set family

D = {A ∈ S : µ(A) = ν(A)}.

We verify that D is a Dynkin class as follows:

(i) D contains the ground set S because µ(S) = 1 and ν(S) = 1.

(ii) Assume that A,B ∈ D are such that A ⊂ B. Then

µ(B \ A) = µ(B)− µ(A) = ν(B)− ν(A) = ν(B \ A),

so that B \ A ∈ D.
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(iii) Assume that A1, A2, · · · ∈ D are such that A1 ⊂ A2 ⊂ · · · . The mono-
tone continuity of measures (Proposition 1.6) then implies that

µ(∪nAn) = lim
n→∞

µ(An) = lim
n→∞

ν(An) = ν(∪nAn),

so that ∪nAn ∈ D.

Due to (2.9) we see that D ⊃ C. Because C is closed under pairwise inter-
section and generates S, the monotone class theorem (Theorem 2.8) implies
that D ⊃ S. This means that (2.9) holds for all A ∈ S. Hence µ = ν.

Dynkin’s identification theorem has an important corollary for proba-
bility measures on the real line. The cumulative distribution function of a
probability measure µ on (R,B(R)) is a function F : R→ [0, 1] defined by

F (x) = µ((−∞, x]).

Theorem 2.9. Probability measures µ1 and µ2 on (R,B(R)) are equal if
and only if their cumulative distributions functions F1 and F2 are equal.

Proof. Assume that F1 = F2. Define a set family on the real line by C =
{(−∞, x] : x ∈ R}. Because (−∞, x]∩ (−∞, y] = (−∞, x∧ y] for all x, y, we
see that C is closed under pairwise intersection. Because

µ1((−∞, x]) = F1(x) = F2(x) = µ2((−∞, x])

for all real numbers x, we see that µ1(A) = µ2(A) for all A ∈ C. We also
know (Proposition 2.4) that C is a generator of B(R). Dynkin’s identical
theorem (Theorem 2.7) now implies that µ1 = µ2. The converse implication
is immediate.

2.7 Exercises

Exercise 2.10 (Truncated measures). The truncation of a measure µ on
(S,S) into a set C ∈ S is a set function µC defined by formula µC(A) =
µ(A ∩ C), A ∈ S.

(a) Prove that µC is a measure on (S,S).

(b) Prove Proposition 2.2 with the help of (a) and Proposition 2.1.

(c) Assume that S is countable. Determine the probability mass function of
the probability measure in Proposition 2.2.
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Exercise 2.11 (Sets of Lebesgue measure zero). Which of the following sets
have zero Lebesgue measure? Justify your answer carefully.

A1 = {x}

A2 = Z

A3 = generic open set

A4 = generic nonempty finite set

A5 = generic countably infinite set

Exercise 2.12 (Lebesgue’s properties). Are the following statements true
or false for the Lebesgue measure on R? Justify your answers rigorously.

(a) There exist a countably infinite set A ⊂ R such that λ(A) = 0.

(b) There exist an unbounded Borel set A ⊂ R such that λ(A) = 3.

(c) There exist a bounded Borel set A ⊂ R such that λ(A) =∞.

Exercise 2.13 (Uniform distribution on an infinite countable set). Does
there exist a probability distribution P on Z+ = {0, 1, 2, . . . } that is uniform
in the sense that the probability mass function x 7→ P ({x}) is constant?
Justify your answer in detail.

Exercise 2.14 (Shift-invariant discrete measures). A measure µ on (Z, 2Z)
is called shift-invariant if µ(A + h) = µ(A) for all A ⊂ Z and all h ∈ Z.
The counting measure # on Z is shift-invariant and satisfies #({0}) = 1. Do
there exist other such measures? Explain your answer rigorously.

Exercise 2.15 (Uniqueness of the Lebesgue measure). Assume that λ1, λ2
are measures on (R,B(R)) that are shift-invariant and such that λi([0, 1]) = 1
for i = 1, 2. Prove that λ1 = λ2 as follows.

(a) For an integer n ≥ 1, define λi,n(A) = 1
2n
λi(A ∩ [−n, n]) for i = 1, 2.

(b) Verify that λi,n is a probability measure.

(c) Verify that the cumulative distribution functions of λ1,n and λ2,n are
equal. (Hint: Proposition 2.6.).

(d) Conclude that λ1,n = λ2,n for all n.

(e) Conclude that λ1 = λ2 (Hint: Monotone continuity of measures.)
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2.8 Notes

The Lebesgue measure was first defined by Borel. Lebesgue developed the
concept of integration with respect to this measure.

The monotone class theorem was proved in 1928 by a Polish mathemati-
cian Wac law Sierpiński in [Sie28], but apparently it was first applied in proba-
bility theory by a Russian–American mathematician Eugene Dynkin [Dyn61].

An excellent summary of the history of probability theory is in the ap-
pendix of [Kal02].



Chapter 3

Random variables

Je ne connais aucune fonction, qui ne soit sommable, je
ne sais s’il en existe.

—Henri Lebesgue

Random variables are observable quantities associated with a random
outcome. They are modelled as functions which are measurable in the sense
that their preimages of measurable sets are measurable.

Key concepts: random variable, measurable function, law of a random
variable

Learning outcomes:

• Get introduced to modelling random variables as functions defined on
a probability space.

• Learn to operate with preimages of functions.

• Get familiar with the concept of the law of a random variable.

• Learn to construct new functions by pointwise operations on functions.

• Gain insight on how measurability is preserved in standard pointwise
operations on functions.

Prerequisites: limits, suprema, and infima of number sequences

26



CHAPTER 3. RANDOM VARIABLES 27

3.1 Preimages

The preimage of a set B ⊂ S2 under a function f : S1 → S2 is the set of
points that f maps into B, denoted by

f−1(B) = {x ∈ S1 : f(x) ∈ B}.

If f is a bijection with inverse function y 7→ f−1(y), then we see that
f−1(B) = {f−1(y) : y ∈ B}. A function that is not a bijection does not
admit an inverse function, but the preimages of f are well define also in this
case.

� The preimage operation B 7→ f−1(B) maps subsets of S2 into subsets
of S1. Preimages are always well defined for any function f .

Proposition 3.1. For any function f : S1 → S2 and for arbitrary sets
B,Bi ⊂ S2, i ∈ I,

f−1(Bc) = f−1(B)c (3.1)

f−1(∩i∈IBi) = ∩i∈If−1(Bi) (3.2)

f−1(∪i∈IBi) = ∪i∈If−1(Bi). (3.3)

Proof. Equality (3.1) follows by

f−1(Bc) = {x ∈ S1 : f(x) ∈ Bc}
= {x ∈ S1 : f(x) /∈ B}
= {x ∈ S1 : x /∈ f−1(B)}
= {x ∈ S1 : x ∈ f−1(B)c}
= f−1(B)c,

and equality (3.2) by

f−1(∩i∈IBi) = {x ∈ S1 : f(x) ∈ ∩i∈IBi}
= {x ∈ S1 : f(x) ∈ Bi for all i ∈ I}
= {x ∈ S1 : x ∈ f−1(Bi) for all i ∈ I}
= {x ∈ S1 : x ∈ ∩i∈If−1(Bi)}
= ∩i∈If−1(Bi).

Equality (3.3) follows by replacing ‘∩’ 7→ ‘∪’ and ‘all’ 7→ ‘some’ above.
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3.2 Measurable functions

A function f : S1 → S2 associated with measurable spaces (S1,S1) and
(S2,S2) is called measurable if

f−1(B) ∈ S1 for all B ∈ S2,

where f−1(B) = {x : f(x) ∈ B} denotes the preimage of B by f . If the asso-
ciated sigma-algebras are not clear from the context, we say that a function
is S1/S2-measurable.

� A function f is measurable iff the preimages of measurable sets under
f are measurable sets.

Note the analogy with topology.

� A function f is continuous iff the preimages of open sets under f are
open sets.

Proposition 3.2. The indicator function 1A of a measurable set A is
measurable.

Proof. Fix a measurable space (S,S) and consider a set A ∈ S. Observe that
for any subset B of the real line (or the extended real line),

1−1
A (B) =


∅ if 0, 1 /∈ B,
A if 0 /∈ B and 1 ∈ B,
Ac if 0 ∈ B and 1 ̸∈ B,
S if 0, 1 ∈ B.

Therefore, all possible preimages of 1A are the sets ∅, A,Ac, S. These are all
contained in S because A ∈ S.

The following result provides a convenient sufficient condition for verifying
that f : S1 → S2 is measurable.

Proposition 3.3. Let C be a generator of S2. Then f is S1/S2-measurable
if and only if

f−1(B) ∈ S1 for all B ∈ C. (3.4)



CHAPTER 3. RANDOM VARIABLES 29

Proof. If f is S1/S2-measurable, then (3.4) follows immediately.
Verifying the less immediate direction is an example of a proof technique

where we first specify a set family containing all ‘good’ sets, and we then
prove that this set family is so large that the claim follows. In this case the
good sets are the members of S2 for which f−1(G) ∈ S1. Then we define a
set family

G = {G ∈ S2 : f−1(G) ∈ S1}.

Assumption (3.4) implies that C ⊂ G. We will next verify that G is a sigma-
algebra:

(i) f−1(S2) = S1 ∈ S1 implies that S2 ∈ G. Similarly, f−1(∅) = ∅ ∈ S1
implies that ∅ ∈ G. Hence G contains ∅, S2.

(ii) If B ∈ G, then f−1(B) ∈ S1, so that in light of (3.1) it follows that
f−1(Bc) = (f−1(B))c ∈ S1. Therefore, Bc ∈ G. Hence G is closed under
complement.

(iii) Verifying that G is closed under countable intersection and countable
union can be done a similar manner as in (ii) using (3.2)–(3.3).

We see that G is a sigma-algebra on S2 containing the set family C. By
definition, σ(C) is the smallest such sigma-algebra. Therefore, S2 = σ(C) ⊂
G. Therefore, every set G ∈ S2 belongs to G and hence satisfies the property
f−1(G) ∈ S1. Hence f is S1/S2-measurable.

Proposition 3.4. Continuous functions are measurable.

Proof. Let f : S1 → S2 where S1 and S2 are arbitrary topological spaces
equipped with Borel sigma-algebras S1 and S2. Because f is continuous, we
know that f−1(B) is open for every open set B ⊂ S2. In other words,

f−1(B) ∈ T1 for all B ∈ T2,

where T1 and T2 denote the families of open sets in S1 and S2. Because every
open set is a Borel set, it follows that

f−1(B) ∈ S1 for all B ∈ T2,

Because T2 is a generator of S2, the claim follows by Proposition 3.3.
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3.3 Preservation of measurability

3.3.1 Compositions

The composition of functions f : S1 → S2 and g : S2 → S3 is a function
h = g ◦ f : S1 → S3 defined by h(x) = g(f(x)).

� Preimages work ‘backwards’ under compositions of functions.

S1
f−→ S2

g−→ S3

f−1(g−1(C))
f−1

←− g−1(C)
g−1

←− C.

Proposition 3.5. If f : S1 → S2 is S1/S2-measurable and g : S2 → S3 is
S2/S3-measurable, then the composite function g ◦ f is S1/S3-measurable.

Proof. Denote h = g ◦ f . Fix a set C ∈ S3, and observe that

h−1(C) = {x ∈ S1 : g(f(x)) ∈ C}
= {x ∈ S1 : f(x) ∈ g−1(C)}
= f−1(g−1(C)).

Because g is measurable, we see that B = g−1(C) ∈ S2. Because f is
measurable, it follows that h−1(C) = f−1(B) ∈ S1. We conclude that h is
S1/S3-measurable.

� Compositions of measurable functions are measurable.

3.3.2 Pointwise operations

The pointwise multiplication of a function f : S → R by a scalar c ∈ R yields
a function cf : S → R defined by (cf)(x) = cf(x).

Proposition 3.6. If f : S → R is measurable, then so is cf , for any c ∈ R.

Proof. We may represent cf as a composition cf = ψ ◦ f where ψ : R → R
is defined by ψ(y) = cy. The function ψ is measurable as a continuous
function (Proposition 3.4). Because compositions of measurable functions
are measurable (Proposition 3.5), it follows that cf = ψ◦f is measurable.
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The pointwise sum of functions f, g : S → R is a function f + g defined
by (f + g)(x) = f(x) + g(x). The pointwise product, min, max are defined
analogously.

Proposition 3.7. If f, g : S → R are measurable, then so are the functions
f + g, fg, f ∧ g, f ∨ g. Furthermore, f/g is measurable when g ̸= 0 on S.

Proof sketch. The pointwise sum of two functions can be represented as a
composition

f + g = ψ ◦ ϕ (3.5)

in which ϕ : S → R2 is defined by ϕ(x) = (f(x), g(x)) and ψ : R2 → R is
defined by ψ(y1, y2) = y1 + y2. It is intuitively clear that ϕ is measurable
because both its coordinate functions are measurable. Furthermore, ψ is
measurable as a continuous function (Proposition 3.4). Because compositions
of measurable functions are measurable (Proposition 3.5), it follows that
f + g = ψ ◦ ϕ is measurable.

The pointwise product of two functions can be written as a similar com-
position fg = ψ ◦ ϕ where ϕ is the same as above, but ψ is updated to
ψ(y1, y2) = y1y2. Again ψ : R2 → R is continuous and hence measurable.
Hence the same argument as above concludes fg is measurable. Verifying
the measurability of the pointwise min, max, and quotient of f and g can be
completed analogously.

‘It is intuitively clear that ϕ is measurable’ is the part the we skipped in
the proof. Verifying this is harder than what one might expect. A curious
reader is recommended to consult [Kal02, Lemma 1.12] for details.

Below R̄ = R ∪ {−∞} ∪ {∞} denotes the extended real line equipped
with the Borel sigma-algebra B(R̄) generated by open sets in R̄. A set is
open in R̄ if and only if it can be written as a union of open intervals (a, b)
and open rays of form [−∞, a) and (b,∞].

Proposition 3.8. If the functions f1, f2, . . . : S → R̄ are measurable, then
so are the pointwise infimum infn fn and pointwise supremum supn fn.

Proof. (i) Let g = supn fn. Then for any t ∈ R,

g−1([−∞, t]) = {x ∈ S : g(x) ≤ t}
= {x ∈ S : fn(x) ≤ t for all n}
= ∩n≥1{x ∈ S : fn(x) ≤ t}
= ∩n≥1f

−1
n ([−∞, t]).
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Because [−∞, t] is a Borel set in R̄, it follows that f−1
n ([−∞, t]) ∈ S for all

n. Hence g−1([−∞, t]) ∈ S. In particular, g−1(B) ∈ S for every B in the set
family C = {[−∞, t] : t ∈ R}. Because C is a generator1 of B(R̄), it follows
[Kal02, Lemma 1.4] that g is measurable.

(ii) Next, by noting that infn fn = − supn(−fn), it follows from (i) that
infn fn is measurable.

Proposition 3.9. If the functions f1, f2, . . . : S → R̄ are measurable, and
fn → f pointwise, then f is measurable.

Proof. If a sequence x1, x2, . . . converges in R̄ according to limn→∞ xn = x,
then

x = lim sup
n→∞

xn = inf
m≥1

sup
n≥m

xn.

Under the assumptions that f is a pointwise limit, the limit function f may
then be represented pointwise by

f = inf
m≥1

sup
n≥m

fn︸ ︷︷ ︸
gm

.

Then each gm is measurable by Proposition 3.8. Then f = infm≥1 gm is
measurable, again by Proposition 3.8.

3.4 Measurability of countable-range functions

Lemma 3.10. A function f : S → R̄ with a countable range is measurable
if and only if f−1({y}) ∈ S for all y in the range of f .

Proof. The forward implication ‘only if’ is immediate because singleton sets
{y} are Borel sets. To prove the backward implication ‘if’, denote the range of
f by f(S) = {f(x) : x ∈ S}. Fix a Borel set B ⊂ R. Note that B = ∪y∈B{y},
so that f−1(B) = ∪y∈Bf

−1({y}) by (3.3). We also note that f−1({y}) = ∅
for y /∈ f(S). Therefore, f−1(B) = ∪y∈B∩f(S)f

−1({y}) equals a countable
union of measurable sets f−1({y}). Because countable unions of measurable
sets are measurable, it follows that f−1(B) is measurable.

1This may be proved in the same manner as for R or [0,∞].



CHAPTER 3. RANDOM VARIABLES 33

3.5 Random variables

A probability space is a triple (Ω,A,P) in which Ω is a set, A is a sigma-
algebra on Ω, and P is a probability measure on (Ω,A). A random variable
on probability space (Ω,A,P) is a measurable function X : Ω → S where
(S,S) is a measurable space.

� Commonly used informal notations P(X = x) and P(X ∈ B) now have
precise meanings

P(X = x) = P(X−1({x})) = P({ω ∈ Ω: X(ω) = x}),
P(X ∈ B) = P(X−1(B)) = P({ω ∈ Ω: X(ω) ∈ B}).

A random vector on probability space (Ω,A,P) is a measurable function
X : Ω→ Rn where Rn is always seen as a measurable space equipped with the
Borel sigma-algebra B(Rn), the smallest sigma-algebra containing the open
sets in Rn. The observables may also assume values in a space S ̸= Rn. In this
case we equip S with its Borel sigma-algebra B(S) when S is a topological
space, or some other sigma-algebra otherwise. Different types of random
variables are described in Table 3.1.

Table 3.1: Examples of random variables

Name S S

Random integer Z 2Z

Random number R B(R)
Random vector Rn B(Rn)
Random matrix Rm×n B(Rm×n)
Random sequence R∞ B(R∞)
Continuous stochastic process C[0, T ] B(C[0, T ])

Undirected random graph {0, 1}(
n
2) 2{0,1}

(n2)

3.6 Law of a random variable

Let X : Ω→ S be a random variable defined on a probability space (Ω,A,P)
where (S,S) is a measurable space. The law or distribution of X is a set
function µ : S → [0, 1] defined by

µ(B) = P(X−1(B)).
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Proposition 3.11. The law of X is a probability measure on (S,S).

Proof. (i) We note that µ(∅) = P(X−1(∅)) = P(∅) = 0.
(ii) Assume that B1, B2, · · · ∈ S are disjoint. Then

X−1(Bi) ∩X−1(Bj)
(3.2)
= X−1(Bi ∩Bj) = X−1(∅) = ∅ for i ̸= j,

so that also the preimages X−1(B1), X
−1(B2), · · · ∈ S are disjoint. It follows

that

µ
(⋃

i

Bi

)
= P

(
X−1

(⋃
i

Bi

))
(3.3)
= P

(⋃
i

X−1(Bi)
)

=
∑
i

P
(
X−1(Bi)

)
=
∑
i

µ(Bi).

Hence µ is countably disjointly additive, and we conclude that µ is a measure.
(iii) Finally, the observation that µ(S) = P(X−1(S)) = P(Ω) = 1

confirms that µ is a probability measure.

� The law of X allows us to compute the probabilities of all events con-
cerning the random variable X. When our attention is on a single random
variable X, we may often ignore the underlying probability space (Ω,A,P),
and directly operate using the law of X.

� When the law of X equals µ, we say that

‘X is a µ-distributed random variable’

or

‘X is distributed according to µ’.

The law of X is often denoted by µ = P ◦X−1 and called the pushforward
of P by X.
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Proposition 3.12. For every probability measure µ on (S,S) there exists
a probability space (Ω,A,P) and a random variable X : Ω → S such that
the law of X equals µ.

Proof. The proof is simpler than what one might expect. Define (Ω,A,P) =
(S,S, µ) and let X : Ω→ S be the identity map X(ω) = ω. Then X−1(B) =
B for any B ∈ S, and we see that the law of X equals µ.

Example 3.13. Let Ω = [0, 1], A = B([0, 1]), and P = λ be the Lebesgue
measure of R restricted to [0, 1]. Define a random variable X : Ω → R by
X(ω) = 1(1/2,1](ω). Determine the law of X.

We note that

X−1(B) =


∅ if 0, 1 /∈ B,
(1/2, 1] if 0 /∈ B and 1 ∈ B,
(1/2, 1]c if 0 ∈ B and 1 ̸∈ B,
[0, 1] if 0, 1 ∈ B.

Therefore,

P(X−1(B)) =


λ(∅) = 0 if 0, 1 /∈ B,
λ((1/2, 1]) = 1

2
if 0 /∈ B and 1 ∈ B,

λ((1/2, 1]c) = 1
2

if 0 ∈ B and 1 ̸∈ B,
λ([0, 1]) = 1 if 0, 1 ∈ B.

We find that µ = 1
2
δ0 + 1

2
δ1.

3.7 Exercises

Exercise 3.14 (Transformed random numbers). Let U be a random variable
uniformly distributed in [0, 1]. Define X = 1 − U and Y = ϕ(U) where2

ϕ(u) = 2u− ⌊2u⌋.

(a) Determine the cumulative distribution function of X.

(b) Determine the cumulative distribution function of Y .

(c) Are X and Y equally distributed? If yes, explain why. If no, write down
a measurable set A for which P(X ∈ A) ̸= P(Y ∈ A).

2⌊a⌋ denotes the rounding down of a: the unique integer k such that k ≤ a < k + 1.
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Exercise 3.15 (Logs and roots random numbers). Consider a probability
space (Ω,A,P) in which Ω = (0, 1), A = B((0, 1)), and P is the Lebesgue
measure restricted to (0, 1). Define X, Y : Ω→ R by

X(ω) = log

(
1

1− ω

)
, X̃(ω) = log

(
1

ω

)
,

Y (ω) =

√
1

1− ω
, Ỹ (ω) =

√
1

ω
.

(a) Convince yourself and others that X, Y, X̃, Ỹ are random variables.

(b) Compute the cumulative distribution function F : R→ [0, 1] for X, Y .

(c) Compute the cumulative distribution function F : R→ [0, 1] for X̃, Ỹ .

(d) Some, if not all, of the laws of X, Y, X̃, Ỹ are familiar probability distri-
butions. Can you recognise them?

Exercise 3.16 (Nonstandard parametric family). Fix numbers p ∈ [0, 1] and
t ∈ (0,∞) and define a set function µp,t : B(R)→ [0,∞] by3

µp,t(A) =

{
1− p+ cλ(A ∩ [0, t]) if 0 ∈ A,
cλ(A ∩ [0, t]) if 0 /∈ A,

where c is chosen so that µp,t is a probability measure on (R,B(R)).

(a) What is the value of c?

(b) Determine a measurable setB ⊂ R such that µ0,t(B) = 1 and µ1,t(B) = 0.

(c) Let T be a random variable in R distributed according to µp,t. Determine
values of p and t such that P(T > 0) = 0.3 and P(4 < T < 5) = 0.01.

Exercise 3.17 (Sampling near zero). Define P =
∑∞

k=1 2−kδ1/k2 .

(a) Prove that P is a probability measure on (R,B(R)).

(b) Compute P(X ≤ 1
9
) for a P -distributed random variable X.

(c) Let Y be a random variable with a geometric distribution P(Y = k) =
(1 − p)k−1p, k = 0, 1, 2, . . . , where p ∈ (0, 1). Determine a function ϕ
such that the law of ϕ(Y ) equals P .

3Unless otherwise mentioned, λ stands for the Lebesgue measure on R.
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3.8 Historical remarks

Andrey Kolmogorov made the axioms of random variables popular in his
famous book from 1933. These concepts were more or less known to earlier
researchers, at least Johann Radon and Maurice Fréchet. See [Kal02] for a
detailed historical account.



Chapter 4

Expectations

Put simply, Expected Goals (xG) is a metric designed to
measure the probability of a shot resulting in a goal.

—StatsBomb Inc.

The expectation of a real-valued random variable is the average of its
possible values weighted by the corresponding probabilities. Because proba-
bilities are represented using a measure, we need to define what is meant by
a weighted average with respect to a measure. This concept is the modern
definition of an integral.

Key concepts: integral against a measure

Learning outcomes:

• Learn to approximate general functions with finite-range functions

• Get introduced to the modern definition of an integral.

• Learn how to compute expected values using integrals.

Prerequisites: Previous chapters.
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4.1 Approximation by finite-range functions

The integral of a nonnegative measurable function f shall be defined as limit
of integrals

∫
S
fn dµ, where fn are finite-range functions approximating the

integrand. The approximating functions are defined by discretising the ex-
tended half line R̄+ as follows.

Given an integer n ≥ 1 we define a lattice

2−nZ+ = {0, 1 · 2−n, 2 · 2−n, 3 · 2−n, . . . },

and the down-rounding of x ∈ R̄+ at resolution n by

⌊x⌋n =

{
max{q ∈ 2−nZ+ : q ≤ x}, x <∞,
∞, x =∞.

(4.1)

We also define a truncation of x ∈ R̄+ at level n by x∧n = min{x, n}. Then
we define an approximation of f at resolution n by

fn(s) = ⌊f(s)⌋n ∧ n. (4.2)

Proposition 4.1. For any measurable function f : S → R̄+ and any in-
teger n ≥ 1, the function fn : S → R̄+ defined by (4.2) is a measurable
function with a finite range contained in 2−nZ+ ∩ [0, n]. Furthermore,
fn ↑ f pointwise as n→∞.

Proof. Observe that fn = τn◦ρn◦f , where ρn(x) = ⌊x⌋n is the downrounding
map, and τn(x) = x ∧ n is truncation map. It is not hard to verify that ρn
is measurable (Exercise 4.16). Furthermore, τn : R̄+ → R̄+ is continuous,
and therefore measurable (Proposition 3.4). Hence fn is measurable, being
a composition of measurable functions (Proposition 3.5).

Because the range of τn ◦ ρn is contained in 2−nZ+∩ [0, n], so is the range
of fn. Hence the range of fn is finite. Verifying that fn → f is not hard.
(Draw a picture.)

� All nonnegative measurable functions can be approximated by finite-
range measurable functions.

4.2 Integrating nonnegative functions

A partition of a set S is a family of disjoint sets Ai ⊂ S such that
⋃

i∈I Ai = S.
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� A partition decomposes a set S into disjoint pieces so that each point
of S is contained in exactly one piece.

The integral of a measurable function f : S → R̄+ against a measure µ on
a measurable space (S,S) is defined by∫

S

f dµ = sup
{Ai}

∑
i

(
inf
s∈Ai

f(s)
)
µ(Ai), (4.3)

where the supremum is taken with respect to all partitions {Ai} of S into
finitely many nonempty measurable sets.

� The integral of a function f against a measure µ is typically denoted
in many ways, including∫

S

f dµ =

∫
S

f(s)µ(ds) = µ(f).

Proposition 4.2. The integral of a measurable function f : S → R̄+ with
a finite range f(S) = {f(s) : s ∈ S} equals∫

S

f dµ =
∑

x∈f(S)

xµ
(
f−1({x})

)
. (4.4)

In particular,
∫
S

1A dµ = µ(A) for every measurable A ⊂ S.

Proposition 4.2 will be proved using the following, slightly more general,
technical result.

Lemma 4.3. For any measurable function of form f =
∑n

j=1 bj1Bj
in

which bj ∈ R̄+ and the sets B1, . . . , Bn are disjoint, the integral equals∫
S

f dµ =
n∑

j=1

bj µ(Bj). (4.5)

Proof. Denote B0 = (B1 ∪ · · · ∪ Bn)c and define b0 = 0. Then the sets
B0, B1, . . . , Bn form a partition of S, and f(s) = bj for all s ∈ Bj.

Let {Ai : i = 1, . . . ,m} be a partition of S into disjoint nonempty mea-
surable sets, and define ai = infs∈Ai

f(s). If Ai ∩Bj contains a point t, then
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ai ≤ f(t) = bj. Therefore, ai ≤ bj whenever Ai ∩Bj is nonempty, and we see
that

aiµ(Ai ∩Bj) ≤ bjµ(Ai ∩Bj) for all i, j.

By observing that {Ai ∩ Bj : j = 0, . . . , n} is a partition of Ai, and that
{Ai ∩Bj : i = 1, . . . ,m} is a partition of Bj, we find that

µ(Ai) =
n∑

j=0

µ(Ai ∩Bj) and µ(Bj) =
m∑
i=1

µ(Ai ∩Bj).

It follows that
m∑
i=1

aiµ(Ai) =
m∑
i=1

n∑
j=0

aiµ(Ai ∩Bj) ≤
m∑
i=1

n∑
j=0

bjµ(Ai ∩Bj) =
n∑

j=0

bjµ(Bj).

By recalling the definition of ai, we see that∑
i

(
inf
s∈Ai

f(s)
)
µ(Ai) ≤

n∑
j=0

bjµ(Bj). (4.6)

The above computation shows that (4.6) holds for an arbitrary finite
partition {Ai}. Furthermore, (4.6) holds as equality if we choose {Ai} to be
the partition of S consisting of the nonempty sets among B0, B1, . . . , Bn. We
may hence conclude that∫

S

f dµ = sup
{Ai}

∑
i

(
inf
s∈Ai

f(s)
)
µ(Ai) =

n∑
j=0

bjµ(Bj).

We may omit the first term in the sum on the right because b0 = 0.

Proof of Proposition 4.2. Enumerate the range of the integrand as f(S) =
{b1, . . . , bn}, and denote Bj = f−1({bj}). Then the integrand may be written
as f =

∑n
j=1 bj1Bj

with Bj disjoint. Lemma 4.3 then implies that∫
S

f dµ =
n∑

j=1

bj µ(Bj) =
∑

x∈f(S)

xµ
(
f−1({x})

)
.

In particular, if f = 1A for some measurableA ⊂ S, then the range of f equals
{0, 1}, the preimages are given by f−1({0}) = Ac and f−1({1}) = A, so that
the above formula becomes∫

S

f dµ = 0 · µ(Ac) + 1 · µ(A) = µ(A).
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Proposition 4.4 (Monotonicity). For any measurable functions f, g : S →
R̄+, f ≤ g pointwise =⇒ µ(f) ≤ µ(g).

Proof. For any finite partition of S into measurable sets Ai, we see that
infs∈Ai

f(s) ≤ infs∈Ai
g(s) for all i, so that∑

i

(
inf
s∈Ai

f(s)
)
µ(Ai) ≤

∑
i

(
inf
s∈Ai

g(s)
)
µ(Ai).

The claim hence follows by taking suprema on both sides of the above in-
equality, and recalling the defining formula (4.3).

Theorem 4.5 (Monotone continuity). For arbitrary measurable functions
f, fn : S → R̄+, fn ↑ f =⇒ µ(fn) ↑ µ(f).

Proof. Because f1 ≤ f2 ≤ · · · ≤ f , we see by applying Proposition 4.4 that
µ(f1) ≤ µ(f2) ≤ · · · ≤ µ(f). Because every nondecreasing sequence in R̄+

converges, it follows that µ(fn) converges to a limit in R̄+ that satisfies

lim
n→∞

µ(fn) ≤ µ(f). (4.7)

To prove a corresponding reverse inequality we will show that for every
finite partition {Ai : i ∈ I} of S into measurable sets,

lim
n→∞

µ(fn) ≥
∑
i∈I

aiµ(Ai)︸ ︷︷ ︸
L

, (4.8)

where ai = infs∈Ai
f(s).

(i) Assume that 0 < L <∞. Then the set

I+ = {i ∈ I : aiµ(Ai) > 0} (4.9)

is nonempty, and we find that ai ∈ (0,∞) and µ(Ai) ∈ (0,∞) for all i ∈ I+.
Fix a small enough number ϵ > 0 such that ϵ < ai for all i ∈ I+. Define

Ain = {s ∈ Ai : fn(s) > ai − ϵ}, i ∈ I+.

Because the sets {Ai : i ∈ I+} are disjoint, so are {Ain : i ∈ I+}. The family
of sets Ain, i ∈ I+, augmented with the set Bn = (∪i∈I+Ain)c, hence forms a
partition of S. Therefore,

µ(fn) ≥
∑
i∈I+

(
inf

s∈Ain

fn(s)
)
µ(Ain) +

(
inf
s∈Bn

fn(s)
)
µ(Bn)

≥
∑
i∈I+

(ai − ϵ)µ(Ain).
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Because fn ↑ f pointwise, and f(s) > ai − ϵ for all s ∈ Ai, we find that
Ain ↑ Ai as n→∞. The monotone continuity of measures (Proposition 1.5)
now implies that µ(Ain) ↑ µ(Ai), so that

lim
n→∞

µ(fn) ≥
∑
i∈I+

(ai − ϵ)µ(Ai).

Because the above inequality is true for arbitrarily small ϵ > 0, we may let
ϵ→ 0 above to conclude1 that

lim
n→∞

µ(fn) ≥
∑
i∈I+

aiµ(Ai)
(4.9)
=

∑
i∈I

aiµ(Ai).

(ii) Assume now that L =∞. Then we may fix an index i ∈ I such that
aiµ(Ai) =∞. Then ai, µ(Ai) > 0, and at least one of ai and µ(Ai) is infinite.
Select 0 < M < ai and 0 < N < µ(Ai), and define Ain = {s ∈ Ai : fn(x) >
M}. For the partition {Ain, A

c
in}, we see that

µ(fn) ≥
(

inf
s∈Ain

fn(s)
)
µ(Ain) +

(
inf

s∈Ac
in

fn(s)
)
µ(Ac

in) ≥ Mµ(Ain).

Because fn ↑ f and f(s) > M for all s ∈ Ai, it follows that Ain ↑ Ai

as n → ∞. The monotone continuity of measures (Proposition 1.5) now
implies that limn→∞ µ(Ain) = µ(Ai) > N , and we conclude that

lim
n→∞

µ(fn) ≥ MN.

In the above inequality we may let M ↑ ai and N ↑ µ(Ai) to conclude that

lim
n→∞

µ(fn) ≥ aiµ(Ai) = ∞ (L=∞)
=

∑
i∈I

aiµ(Ai).

(iii) We have verified that (4.8) holds whenever L ∈ (0,∞) or L = ∞.
We also note that (4.8) holds trivially for L = 0. We conclude that

lim
n→∞

µ(fn) ≥
∑
i∈I

(
inf
s∈Ai

f(s)
)
µ(Ai)

for every finite partition {Ai : i ∈ I} of S into measurable sets. Recalling
the defining formula (4.3), it follows that limn→∞ µ(fn) ≥ µ(f). The claim
follows by combining this observation with (4.7).

1This is possible because ai, µ(Ai) <∞ for all i.
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Proposition 4.6 (Linearity). For any measurable functions f, g : S → R̄+,
µ(af + bg) = aµ(f) + bµ(g) for all a, b ∈ R̄+.

Proof. (i) Assume first that f, g both have a finite range. Enumerate the
ranges by f(S) = {x1, . . . , xm} and g(S) = {y1, . . . , yn}. Then f =

∑m
i=1 xi1Ai

and g =
∑n

j=1 yj1Bj
where Ai = f−1({xi}) and Bj = g−1({yj}). By Propo-

sition 4.2, we see that

µ(f) =
∑
i

xiµ(Ai), µ(g) =
∑
j

yjµ(Bj).

It follows that

af + bg =
m∑
i=1

axi1Ai
+

n∑
j=1

byj1Bj

=
m∑
i=1

n∑
j=1

axi1Ai∩Bj
+

m∑
i=1

n∑
j=1

byj1Ai∩Bj

=
m∑
i=1

n∑
j=1

(axi + byj)1Ai∩Bj
.

Because the sets Ai ∩Bj are disjoint, we see by Lemma 4.3 that

µ(af + bg) =
m∑
i=1

n∑
j=1

(axi + byj)µ(Ai ∩Bj)

= a
m∑
i=1

n∑
j=1

xiµ(Ai ∩Bj) + b
m∑
i=1

n∑
j=1

yjµ(Ai ∩Bj)

= a
m∑
i=1

xiµ(Ai) + b
n∑

j=1

yjµ(Bj)

= aµ(f) + bµ(g).

(ii) Assume now that f, g : S → R̄+ are general measurable functions.
Then by Proposition 4.1, we may select finite-range functions fn, gn : S → R̄+

such that fn ↑ f and gn ↑ g. Then afn + bgn ↑ af + bg. Then by part (i), we
see that

µ(afn + bgn) = aµ(fn) + bµ(gn).

The monotone continuity of integration (Theorem 4.5) then implies that
µ(fn) ↑ µ(f), µ(gn) ↑ µ(g), and µ(afn + bgn) ↑ µ(af + bg). The claim follows
by taking limits as n→∞ in the above equality.
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� Integration against a measure µ is a monotone, linear, and monotonely
continuous functional on the convex cone of nonnegative measurable func-
tions.

Recall that the sum µ + ν of measures µ and ν is a measure (Proposi-
tion 1.7). The following result shows how we can integrate against a sum of
measures.

Proposition 4.7. For any measures µ, ν on (S,S) and any measurable
f : S → R̄+, ∫

S

f d(µ+ ν) =

∫
S

f dµ+

∫
S

f dν.

Proof. The proof proceeds in three steps: first for indicators functions, then
for finite-range functions, and then for general nonnegative functions.

(i) For any measurable set B, the definition of the sum of measures (1.7)
implies that∫

S

1B d(µ+ ν) = (µ+ ν)(B) = µ(B) + ν(B) =

∫
S

1B dµ+

∫
S

1B dν.

Therefore, the claim holds for f = 1B.
(ii) Assume that f has a finite range. Then f =

∑n
i=1 bi1Bi

for some
bi ∈ R̄+ and measurable Bi ⊂ S. Then by linearity (Proposition 4.6),∫

S

f d(µ+ ν)
lin
=

n∑
i=1

bi

∫
S

1Bi
d(µ+ ν)

(i)
=

n∑
i=1

bi

(∫
S

1Bi
dµ+

∫
S

1Bi
dν

)
lin
=

∫
S

n∑
i=1

bi1Bi
dµ+

∫
S

n∑
i=1

bi1Bi
dν =

∫
S

f dµ+

∫
S

g dν.

(iii) Assume that f : S → R̄+ is a general measurable function. Let fn
be measurable finite-range functions such that fn ↑ f . Then by monotone
continuity (Theorem 4.5),∫

S

f d(µ+ ν)
cont
= lim

n→∞

∫
S

fn d(µ+ ν)

(ii)
= lim

n→∞

(∫
S

fn dµ+

∫
S

fn dν

)
cont
=

(∫
S

lim
n→∞

fn dµ+

∫
S

lim
n→∞

fn dν

)
=

∫
S

f dµ+

∫
S

f dν.
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� Nonnegative integration can be viewed as a functional (f, µ) 7→
∫
f dµ

that is linear in both of its arguments.

We finish this section by the following lemma that is needed in the next
section to prove Theorem 4.13.

Lemma 4.8 (Fatou’s inequality). For arbitrary measurable functions fn : S →
R̄+:

lim inf
n→∞

µ(fn) ≥ µ(lim inf
n→∞

fn).

Proof. Define gm = infn≥m fn, and note that gm : S → R̄+ is measurable.
(i) By definition g1 ≤ g2 ≤ · · · , which implies that the pointwise limit g =

limm→∞ gm is a well-defined function g : S → R̄+. The monotone continuity
of nonnegative integration then implies that

µ(g) = lim
m→∞

µ(gm). (4.10)

(ii) Because gm ≤ fn for all m ≤ n, the monotonicity of nonnegative
integration implies that µ(gm) ≤ µ(fn) for all n ≥ m. In particular, µ(gm) ≤
infm≥n µ(fn). By taking limits as m→∞ and applying (4.10), we conclude
that

µ(g) = lim
m→∞

µ(gm) ≤ lim
m→∞

inf
m≥n

µ(fn) = lim inf
n→∞

µ(fn).

The claim follows by observing that g = limm→∞ gm = lim infn→∞ fn.

4.3 Integrating general functions

The integral of a measurable function f : S → R̄ is defined by∫
S

f dµ =

∫
S

f+ dµ−
∫
S

f− dµ, (4.11)

where the positive part and the negative part of f are defined by

f+ = max{f, 0} and f− = max{−f, 0},

and we use the convention2 ∞ + (−∞) = −∞. Because f+ and f− are
nonnegative measurable functions (Exercise 4.19), the integrals on the right
side of (4.11) are well defined by formula (4.3).

2The value of the integral
∫
S
f dµ is usually left undefined in the case where

∫
S
f+ dµ

and
∫
S
f− dµ both are infinite. To avoid writing ‘when the integral is defined’ in later

theorems, here we choose to define this value as −∞.



CHAPTER 4. EXPECTATIONS 47

Proposition 4.9 (Monotonicity). f ≤ g =⇒ µ(f) ≤ µ(g) for all mea-
surable functions f, g : S → R̄.

Proof. Note that f ≤ g implies that f+ ≤ g+ and f− ≥ g−. Proposition 4.4
then implies that µ(f+) ≤ µ(g+) and µ(g−) ≤ µ(f−). Therefore, in the case
where min{µ(f+), µ(f−)} and min{µ(g+), µ(g−)} both are finite,

µ(f) = µ(f+)− µ(f−) ≤ µ(g+)− µ(g−) = µ(g).

For the remaining cases, we note that:

(i) If min{µ(f+), µ(f−)} =∞, then µ(f−) =∞.

(ii) If min{µ(g+), µ(g−)} =∞, then µ(g−) =∞ implies that µ(f−) =∞.

The convention x+ (−∞) = −∞ for all x ∈ R̄ now implies that µ(f) = −∞
in both of the above cases. Therefore, µ(f) ≤ µ(g).

A measurable function f : S → R̄ is called integrable against µ if the value
of the integral

∫
S
f dµ is an ordinary real number.

Proposition 4.10. A measurable function f : S → R̄ is integrable if and
only if

∫
S
|f | dµ <∞.

Proof. The definition together with the convention ∞−∞ = −∞ implies
that

∫
S
f dµ ∈ R if and only if

∫
S
f+ dµ and

∫
S
f− dµ both are finite. Because

|f | = f+ + f−, Proposition 4.6 implies that
∫
S
|f | dµ =

∫
S
f+ dµ +

∫
S
f− dµ.

Therefore,
∫
S
f dµ ∈ R if and only if

∫
S
|f | dµ <∞.

� The integral of a measurable function is an extended real number in R̄.
Integrable functions are those for which the integral is an ordinary real
number in R.

In most applications our focus will be on real-valued functions for which
the integrals are real valued. The space of such functions is denoted by

L1(µ) =

{
f : S → R measurable :

∫
S

|f | dµ <∞
}
.
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Proposition 4.11 (Linearity). L1(µ) is a real vector space, in which the
equality µ(af + bg) = aµ(f)+ bµ(g) holds for all f, g ∈ L1(µ) and a, b ∈ R.

Proof. (i) Fix f, g ∈ L1(µ) and a, b ∈ R. Denote h = af + bg. Then
|h| ≤ |a||f | + |b||g|. By applying Proposition 4.9 and then Proposition 4.6,
we find that

µ(|h|) ≤ µ(|a||f |+ |b||g|) ≤ |a|µ(|f |) + |b|µ(|g|) < ∞.

Hence h ∈ L1(µ) and we conclude that L1(µ) is a vector space.
(ii) We will verify that µ(h) = µ(f) + µ(g) for h = f + g and for all

f, g ∈ L1(µ). By writing f = f+ − f− and g = g+ − g− and h = h+ − h−, we
find that

h+ − h− = f+ − f− + g+ − g−.

By rearranging this equality, we see that

h+ + f− + g− = h− + f+ + g+.

The above equality only involves nonnegative functions. Therefore, we may
apply Proposition 4.6 to conclude that

µ(h+) + µ(f−) + µ(g−) = µ(h−) + µ(f+) + µ(g+).

By (i) we know that µ(|h|) <∞. Because f+, f− ≤ |f | and g+, g− ≤ |g| and
h+, h− ≤ |h| ≤ |f |+ |g|, we conclude by Proposition 4.9 that all integrals in
the above equality are finite. Hence by rearranging, we find that

µ(h+)− µ(h−) = µ(f+)− µ(f−) + µ(g+)− µ(g−).

By definition, the above equality can be rewritten as µ(h) = µ(f) + µ(g).
(iii) We claim that µ(cf) = cµ(f) for all c ∈ R and f ∈ L1(µ). Assume

first that c ≥ 0. Then (cf)+ = cf+ and (cf)− = cf−. Hence

µ(cf) = µ(cf+)− µ(cf−) = c(µ(f+)− µ(f−)) = cµ(f).

If c < 0, then (cf)+ = |c|f− and (cf)− = |c|f+, and it follows that

µ(cf) = µ(|c|f−)− µ(|c|f+) = |c|(µ(f−)− µ(f+)) = −|c|µ(f) = cµ(f).
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� Integration is a monotone linear functional on the vector space of inte-
grable functions.

Proposition 4.12 (Triangle inequality). |µ(f)| ≤ µ(|f |) for any measur-
able function f : S → R̄.

Proof. Because |f | = f+ + f−, Proposition 4.6 implies that

µ(|f |) = µ(f+) + µ(f−).

By definition,

µ(f) =


µ(f+)− µ(f−), µ(f+) <∞, µ(f−) <∞,
∞, µ(f+) =∞, µ(f−) <∞,
−∞, µ(f+) <∞, µ(f−) =∞,
−∞, µ(f+) =∞, µ(f−) =∞.

When µ(f+) and µ(f−) both are finite, the inequality

|µ(f+)− µ(f−)| ≤ |µ(f+)|+ |µ(f−)| = µ(f+) + µ(f−)

implies that |µ(f)| ≤ µ(|f |). In the remaining cases the claim follows imme-
diately.

New result, added 7 Oct 2024 The following result confirms another con-
tinuity property of integration, in which the convergence of the integrands
need not be monotone.

Theorem 4.13 (Dominated continuity). For arbitrary measurable func-
tions fn, f, g : S → R̄ such that |fn| ≤ g for all n and

∫
S
g dµ <∞:

fn → f =⇒
∫
S

fn dµ→
∫
S

f dµ.

Proof. (i) We will first prove the theorem under an extra assumption that

g(x) ∈ R for all x ∈ S. (4.12)

This guarantees that fn, f, g are real-valued functions, and we may add and
subtract these pointwise without worrying about infinite values. Because
|fn| ≤ g, the monotonicity of nonnegative integration implies that fn is
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integrable. The same is true for f , because |f | = limn→∞ |fn| ≤ |g| pointwise.
Hence fn, f, g are all in L1(µ), and we may add and subtract their integrals
as ordinary real numbers. Because the functions g ± fn are nonnegative,
Fatou’s inequality (Lemma 4.8) and the linearity of integration imply that

µ(g) + lim inf
n→∞

µ(±fn) = lim inf
n→∞

µ(g ± fn)

≥ µ(lim inf
n→∞

(g ± fn))

= µ(g ± f)

= µ(g)± µ(f).

By subtracting µ(g) from both sides, we conclude that

lim inf
n→∞

µ(±fn) ≥ ±µ(f).

By noting that lim infn→∞ µ(−fn) = − lim supn→∞ µ(fn), the above pair of
inequalities can be rewritten as

µ(f) ≤ lim inf
n→∞

µ(fn) ≤ lim sup
n→∞

µ(fn) ≤ µ(f).

All quantities in the above display must be equal to each other, and we
conclude that µ(f) = limn→∞ µ(fn).

(ii) Let us now get rid of the extra assumption (4.12). Because
∫
g dµ <

∞, we know (Theorem 5.2) that the complement of S̃ = {x ∈ S : g(x) ∈ R}
has zero measure. Observe next that the functions f̃ = f1S̃, f̃n = fn1S̃, and
g̃ = g1S̃ satisfy the assumptions of the theorem, and that the function g̃ is
real-valued. Hence by (i), we conclude that

µ(f̃) = lim
n→∞

µ(f̃n).

By insensitivity of integration (Proposition 5.3), we see that µ(f̃) = µ(f)
and µ(f̃n) = µ(fn). Hence the claim follows from (i).

4.4 Expectations

The expectation of a random variable X : Ω → R̄ on probability space
(Ω,A,P) is defined as the integral

EX =

∫
Ω

X dP.

A random variable is called integrable if its expectation is a well-defined real
number, or equivalently (Proposition 4.10), if E|X| <∞. The space of real-
valued integrable defined on probability space (Ω,A,P) random variables is
denoted by L1(P).
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Theorem 4.14. The expectation operation on the space of R̄+-valued ran-
dom variables has the following properties.

(i) Linearity: E(aX + bY ) = aE(X) + bE(Y ) for all a, b ∈ R̄+.

(ii) Monotonicity: X ≤ Y =⇒ EX ≤ EY .

(iii) Monotone continuity: Xn ↑ X =⇒ EXn ↑ EX.

Proof. (i) follows from Proposition 4.4, (ii) from Proposition 4.6, and (iii)
from Theorem 4.5.

� The expectation operator is monotone, linear, and monotonically con-
tinuous functional on the convex cone of nonnegative random variables.

Theorem 4.15. The expectation operation on the space of R-valued inte-
grable random variables has the following properties.

(i) Linearity: E(aX + bY ) = aE(X) + bE(Y ) for all a, b ∈ R.

(ii) Monotonicity: X ≤ Y =⇒ EX ≤ EY .

(iii) Dominated continuity: If |Xn| ≤ Y for all n with EY <∞,
then Xn → X =⇒ EXn → EX.

(iv) Bounded continuity: If |Xn| ≤ c for all n for some constant c < ∞,
then Xn → X =⇒ EXn → EX.

Proof. Property (i) and the fact that L1(P) is a real vector space follow
from Proposition 4.11. Property (ii) follows from Proposition 4.9, and (iii)
from Proposition 4.13. Property (iv) follows from (iii) by interpreting c as a
constant random variable such that Y (ω) = c for all ω.

� The expectation operator is monotone linear functional on the vector
space of integrable random variables.

4.5 Exercises

Exercise 4.16 (Down-rounding is measurable). Fix an integer n ≥ 1, and
consider the down-rounding operation ρn : R̄+ → R̄+ defined by (4.1).
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(a) Determine the range of ρn, that is, the set ρn(R̄+) = {ρn(x) : x ∈ R̄+}.

(b) Determine the preimage ρ−1
n ({q}) = {x ∈ R̄+ : ρn(x) = q} for each value

q in the range ρn.

(c) By applying (a) and (b), prove that ρn is a measurable function.

Hint: The formula f−1(B) =
⋃

b∈B∩f(S) f
−1({b}), valid all functions

f : S → T and all sets B ⊂ T , may be helpful.

Exercise 4.17 (Extended domain of a measure). Let (S,S) and (T, T ) be
measurable spaces such that S ⊂ T and A ∩ S ∈ S for all A ∈ T . We define
an extension of a measure µ on (S,S) as a set function µ̃ : T → R̄+ given by

µ̃(A) = µ(A ∩ S), A ∈ T .

(a) Prove that µ̃ is a measure on (T, T )

(b) If µ is a probability measure on (S,S), does it follow that µ̃ is a proba-
bility measure on (T, T )?

(c) Let S = {0, 1} and S = 2S, and define a measure µ on (S,S) by

µ(A) =


0, A = ∅,
1− p, A = {0},
p, A = {1},
1, A = {0, 1}.

where p ∈ [0, 1]. Let µ̃ be the extension of µ to the measurable space
(T, T ) = (R,B(R)). Write down constants c0, c1 such that µ̃ = c0δ0+c1δ1,
where δx is the probability measure on (R,B(R)) defined by δx(A) =
1A(x), A ∈ B(R).

Exercise 4.18 (Alternative integral definition). In some textbooks the inte-
gral of a measurable function f : S → R̄+ is defined by µ(f) = limn→∞ µ(fn)
where fn : S → R̄+ are arbitrary measurable finite-range functions such that
fn ↑ f , and µ(fn) for a finite-range function fn is defined by (4.4). Prove
that this definition agrees with the definition in (4.3).

Exercise 4.19 (Positive and negative parts are measurable). Let f : S → R̄
be a measurable function. Prove that f+, f− are measurable functions. You
may proceed for example as follows.

(i) Write f+ = ρ+ ◦f where ρ+ : R̄→ R̄+ is defined by ρ+(x) = max{x, 0}.
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(ii) Check that the preimages {x ∈ R̄ : ρ+(x) ≤ t} are measurable for every
t ∈ R̄+.

(iii) Conclude that ρ+ is a measurable function.

(iv) Conclude that f is a measurable function.

4.6 Historical notes

Henri Lebesgue (1875–1941). PhD 1902 from Sorbonne for Émile Borel
(Lebesgue was 27, Borel was 31 during that time), seminal thesis Intégrale,
longueur, aire. In Lebesgue’s thesis, original terms include une mesure, un
ensemble mesurable, and so on. He did not speak of sigma-algebras, but
rather measurable sets (ensemble mesurable) which now are called Lebesgue
measurable sets.



Chapter 5

Probability densities

The probability distribution of a random variable is usually represented in
terms of a probability density function with respect to a reference measure.
Usually, but not alway, the reference measure is the chosen as the Lebesgue
measure. In this chapter we learn what probability distributions do admit
a probability density function, and how to compute expected values and
probabilities using densities.

Key concepts: probability density function, almost sure event

Learning outcomes:

• Learn to compute expectations of random variables by integrating ‘against
the law’.

• Learn to construct probability measures as measures weighted by inte-
grable functions.

• Learn how integrate against the Lebesgue measure in practice.

• Recognise when the modern definition of the integral corresponds to
classical high-school definition of the integral.

Prerequisites: Previous chapters.

54
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5.1 Almost sure properties

Let C be a property concerning the points of a measurable space (S,S) that is
equipped with a measure µ. We say that C holds for µ-almost every s ∈ S, or
µ-almost everywhere, if the set C = {s ∈ S : s has property C} is measurable
and µ(Cc) = 0. We say that a property concerning the points of a probability
space (Ω,A,P) holds almost surely , if it holds for P-almost every ω ∈ Ω.

Theorem 5.1. The integral of a measurable function f : S → R̄+ against
a measure µ equals

∫
S
f dµ = 0 if and only if µ({f ̸= 0}) = 0.

� For nonnegative functions,
∫
S
f dµ = 0 if and only if f = 0 µ-almost

everywhere.

� For any random variable, E|X| = 0 if and only if X = 0 almost surely.

Proof. Fix an integer n ≥ 1, and define functions fn, g : S → R̄+ by formulas
fn = n−11{f≥n−1} and g =∞ · 1{f>0}, so that

fn(s) =

{
0, f(s) < n−1,

n−1, f(s) ≥ n−1,
and g(s) =

{
0, f(s) = 0,

∞, f(s) > 0.

Because fn, g are measurable with finite ranges, Proposition 4.2 implies that

µ(fn) = 0 · µ({f < n−1}) + n−1µ({f ≥ n−1}) = n−1µ({f ≥ n−1}).

and

µ(g) = 0 · µ({f = 0}) +∞ · µ({f > 0}) = ∞ · µ({f > 0}).

Because fn ≤ f ≤ g, we see that monotonicity (Proposition 4.4) implies that
µ(fn) ≤ µ(f) ≤ µ(g). Therefore,

n−1µ({f ≥ n−1}) ≤ µ(f) ≤ ∞ · µ({f > 0}). (5.1)

If µ({f > 0}) = 0, then the inequality on the right side of (5.1) implies that
µ(f) = 0.

Assume now that µ(f) = 0. Then the inequality on the left side of (5.1)
implies that µ({f ≥ n−1}) = 0 for all integers n ≥ 1. Because {f ≥ n−1} ↑
{f > 0}, the monotone continuity of measures (Proposition 1.5) implies that

µ({f > 0}) = lim
n→∞

µ({f > n−1}) = 0.

New result added 4 Oct 2024
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Theorem 5.2. If the integral of a measurable function f : S → R̄+ against
a measure µ satisfies

∫
S
f dµ <∞, then µ({f =∞}) = 0.

� For any R̄+-valued random variable, E|X| < ∞ implies that X < ∞
almost surely.

Proof. Because f ≥ 0, we find that

f = f1{f<∞} +∞1{f=∞} ≥ ∞1{f=∞}.

The monotonicity of nonnegative integration then implies that∫
S

f dµ ≥
∫
S

(
∞1{f=∞}

)
dµ = ∞µ({f =∞}).

Because
∫
S
f dµ is finite, we conclude that µ({f =∞}) = 0.

The integral of a function restricted to a measurable set A ⊂ S is defined
by
∫
A
f dµ =

∫
S

1Af dµ.

Proposition 5.3 (Insensitivity of integration). Let C be a measurable set
such that µ(Cc) = 0.

(i) µ(A) = µ(A ∩ C) for all measurable sets A.

(ii)
∫
S
f dµ =

∫
C
f dµ for all nonnegative measurable functions f .

(iii)
∫
S
f dµ =

∫
C
f dµ for all absolutely integrable functions f .

� When computing the measure of an event or the integral of a function,
we may restrict to a set C with µ(Cc) = 0 without affecting the result.

Proof. (i) Because µ(A∩Cc) ≤ µ(Cc) = 0, we conclude that µ(A∩Cc) = 0.
Because the sets A ∩ C and A ∩ Cc are disjoint, it follows that

µ(A) = µ((A ∩ C) ∪ (A ∩ Cc)) = µ(A ∩ C) + µ(A ∩ Cc) = µ(A ∩ C).

(ii) Let f : S → R̄+ be measurable. Because the sets C and Cc are
disjoint, we find that f = f1C + f1Cc is a sum of measurable nonnegative
functions. By linearity of integration (Proposition 4.6), we find that∫

S

f dµ =

∫
S

f1C dµ+

∫
S

f1Cc dµ. (5.2)
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Observe next that f(s)1Cc(s) > 0 can occur only if s ∈ Cc, so that

{f1Cc > 0} ⊂ Cc.

Therefore, µ({f1Cc > 0}) = 0, and Theorem 5.1 implies that
∫
S
f1Cc dµ = 0.

The second claim now follows from (5.2).
(iii) Consider now an absolutely integrable measurable function f : S →

R̄. Then µ(|f1C |) ≤ µ(|f |) <∞ shows that also f1C is absolutely integrable.
Then µ(f) = µ(f+) − µ(f−), in which both integrals on the right side are
finite. By (ii), we know that µ(f+) = µ(f+1C) and µ(f−) = µ(f−1C). Hence

µ(f1C) = µ((f1C)+)− µ((f1C)−)

= µ(f+1C)− µ(f−1C)

= µ(f+)− µ(f−)

= µ(f).

5.2 Weighted measures and densities

The weighting of a measure ν on (S,S) by a measurable function f : S → R̄+

produces a set function µ : S → R̄+ defined1 by

µ(A) =

∫
A

f dν. (5.3)

When (5.3) holds for all A ∈ S, we say that f is a density function2 of µ
with respect to ν, and abbreviate this by writing dµ = fdν.

Proposition 5.4. For any measure ν on (S,S) and any measurable func-
tion f : S → R̄+, the set function µ defined by (5.3) is a measure on (S,S).
The measure µ is a probability measure if and only if

∫
S
f dν = 1.

� Weighting by a nonnegative function f provides a mechanism for con-
structing new measures from an existing measure ν. The weighted measure
is often abbreviated as fdν.

1Recall that
∫
B
fdν =

∫
S
1Bfdν.

2In real analysis, density functions are called Radon–Nikodym derivatives.
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Proof. (i) Let us first verify that µ is a well-defined set function. For any
measurable set A ⊂ S, the function 1A is measurable, and the same is true
for f by our assumption. Hence also the function 1Af is measurable, and the
integral

∫
A
f dν =

∫
S

1Af dν on the right side of (5.3) is well defined. Hence
µ is a well-defined set function from S into R̄+.

(ii) Because 1∅(s)f(s) = 0 for all s ∈ S, we see that the function 1∅f is
identically zero, and it follows that µ(∅) =

∫
S

1∅f dν = 0.
(iii) To verify disjoint countable additivity, let A1, A2, . . . be disjoint mea-

surable sets. Denote Bn = ∪nk=1Ak. Then 1Bn =
∑n

k=1 1Ak
implies that

1Bnf =
∑n

k=1 1Ak
f . The linearity of integration (Proposition 4.6) implies

that

µ(Bn) =

∫
S

1Bnf dν =
n∑

k=1

∫
S

1Ak
f dν =

n∑
k=1

µ(Ak).

Because Bn ↑ ∪∞k=1Ak, the monotone continuity of measures (Proposition 1.5)
implies that

µ

( ∞⋃
k=1

Ak

)
= lim

n→∞
µ(Bn) = lim

n→∞

n∑
k=1

µ(Ak) =
∞∑
k=1

µ(Ak).

Hence µ is countably disjointly additive, and we conclude that µ is a measure.
(iv) Finally, we note that µ(S) =

∫
S
f dν, so that the measure µ is a

probability measure if and only if
∫
S
f dν = 1.

Todo: Lebesgue integral is the ordinary integral.

Example 5.5 (Normal distribution). The probability measure µ = f dλ on
(R,B(R)) with f(x) = (2π)−1/2e−x2/2 is called the standard normal distribu-
tion.

Example 5.6 (Exponential distribution). The probability measure µ = f dλ
on (R,B(R)) with f(x) = 1(0,∞)ae

−ax is called the exponential distribution
with parameter a ∈ (0,∞).

Example 5.7 (Binomial distribution). The probability measure µ = f d#
on (Z, 2Z) with f(x) = 1[0,n](x)

(
n
x

)
(1 − p)n−xpx is called the binomial distri-

bution with trial count n ≥ 1 and success rate p ∈ [0, 1].

Todo: Examples with no density

5.3 Integrating using densities

The following result demonstrates how to integrate against a weighted mea-
sure.
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Proposition 5.8. The integral of a measurable function g : S → R̄+

against the weighted measure dµ = fdν defined by (5.3) can be computed
according to ∫

S

g(x)µ(dx) =

∫
S

g(x)f(x) ν(dx). (5.4)

� Rewriting (5.4) as
∫
g dµ =

∫
gfdν shows that integration against µ

is converted to integration against ν by symbolically replacing ‘dµ 7→ fdν’.
This motivates abbreviating the f -weighted modification of ν by dµ = fdν.

Proof. We employ a common proof technique in probability theory, where
the claim is proved in three stages: first for indicator functions, then for
finite-range functions, and finally for general functions.

(i) Assume that g = 1A for some measurable set A. Then∫
S

g dµ =

∫
S

1A dµ = µ(A) =

∫
A

f dν =

∫
S

1Af dν.

Hence (5.4) holds for indicator functions g.
(ii) Assume next that g has a finite range enumerated as {a1, . . . , an}. The

function g may then be represented as g =
∑n

k=1 ak1Ak
with Ak = g−1({ak}).

Then by (i) and the linearity of integration, we see that∫
S

n∑
k=1

ak1Ak︸ ︷︷ ︸
g

dµ =
n∑

k=1

ak

∫
S

1Ak
dµ

(i)
=

n∑
k=1

ak

∫
S

1Ak
f dν =

∫
S

n∑
k=1

ak1Ak︸ ︷︷ ︸
g

f dν.

so that (5.4) holds for all measurable finite-range functions g : S → R̄+.
(iii) Let g : S → R̄+ be measurable. Let gn be the down-rounded and

truncated modification of g as defined in (4.2). Proposition 4.1 then implies
that gn ↑ g. Because f is nonnegative, we also see that fgn ↑ fg. Monotone
continuity of integration (Theorem 4.5) then implies that

∫
S
gn dµ ↑

∫
S
g dµ

and
∫
S
fgn dν ↑

∫
S
fg dν. By applying (ii), we may now conclude that∫

S

g dµ = lim
n→∞

∫
S

gn dµ
(ii)
= lim

n→∞

∫
S

fgn dν =

∫
S

fg dν.

5.4 Almost uniqueness
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Proposition 5.9. If f is a density of a measure µ with respect to a measure
ν, then so is every measurable function f̃ : S → R̄+ such that f̃(s) = f(s)
for ν-almost every s ∈ S.

Proof. Let f be a density function of µ with respect to ν. Let C = {s ∈
S : f(s) = f̃(s)}. Then ν(Cc) = 0. Proposition 5.3 then implies that for any
measurable set A,∫

A

f̃ dν =

∫
S

1Af̃ dν =

∫
C

1Af̃ dν =

∫
C

1Af dν =

∫
S

1Af dν = µ(A).

Hence f̃ is also a density of µ with respect to ν.

� Density functions and are usually not unique: A density function re-
mains a density function when its values are modified in a set of reference
measure zero.

The following result shows that a density function, when it exists, is al-
most unique. The proof requires a mild regularity condition. A measure ν on
(S,S) is called sigma-finite if there exist measurable sets Sn ↑ S such that
ν(Sn) < ∞ for all integers n ≥ 1. All finite measures, and in particular, all
probability measures, are sigma-finite. So is the Lebesgue measure, because
λ(Sn) = 2n <∞ for Sn = [−n, n].

Proposition 5.10. Assume that f and g are densities of a measure µ
with respect to a sigma-finite measure ν. Then f(s) = g(s) for ν-almost
every s.

This could be generalised as: Assume that nonnegative measurable functions

f, g satisfy
∫
B f dν =

∫
B g dν for all measurable B. Then f(s) = g(s) for ν-almost

every s.

Proof. Fix some measurable sets Sn ↑ S such that ν(Sn) < ∞, and define
hn = 1Bn(g − f), where

Bn = {s ∈ Sn : g(s) > f(s), f(s) ≤ n}.

The assumption that f and g are densities of the same measure implies that∫
S

1Bnf dν =

∫
S

1Bng dν (5.5)
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with both sides being equal to µ(Bn). Because f(s) ≤ n for all s ∈ Bn, we
see that ∫

S

1Bnf dν ≤
∫
S

1Bnn dν = nν(Bn) ≤ nν(Sn) < ∞,

so that 1Bnf ∈ L1(ν). Equality (5.5) shows that also 1Bng ∈ L1(ν). Because
L1(ν) is a vector space (Proposition 4.11), we see that hn = 1Bng − 1Bnf ∈
L1(ν), and ∫

S

hn dν =

∫
S

1Bng dν −
∫
S

1Bnf dν
(5.5)
= 0.

The definition of Bn implies that hn is nonnegative. Therefore, Proposi-
tion 5.1 implies that ν({hn > 0}) = 0. Because hn(s) > 0 for all s ∈ Bn,
we see that Bn ⊂ {hn > 0}, and therefore ν(Bn) = 0 by monotonicity of
measures (Proposition 1.4).

Finally, we note that Bn ↑ {g > f}, so the monotone continuity of mea-
sures (Proposition 1.5) implies that

ν({g > f}) = lim
n→∞

ν(Bn) = 0.

A symmetric argument where we swap the roles of f and g shows that ν({f >
g}) = 0. As a conclusion, ν({f ̸= g}) = ν({g > f}) + ν({f > g}) = 0.

Example 5.11 (Discrete probability densities). Recall from Section 1.6 that
a probability mass function on a countable set S is a function f : S → [0, 1]
such that

∑
x∈S f(x) = 1. We say in Proposition 1.9 that the formula

P (A) =
∑
x∈A

f(x)

defines a probability measure. By rewriting the above equation as P (A) =∫
A
f d#, we see that P is a f -weighted modification of the counting measure

# on (S, 2S). Hence the probability mass function f is a probability density
function of P with respect to the counting measure.

� Probability mass functions are probability density functions with re-
spect to the counting measure.

5.5 Probability density functions

Let µ and ν be measures on a measurable space (S,S). A measurable function
f : S → R̄+ is called a density function of µ with respect to ν if

µ(A) =

∫
A

f dν for all A ∈ S. (5.6)
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A density function of a probability measure µ is called a probability density
function. Observe that (5.6) coincides with (5.3) used to define weighted
measures. Therefore, f being a density function means that µ equals the
f -weighted modification of ν.

� The measure ν is often called a reference measure.

Not all measures admit a density function with respect to a given reference
measure ν. Even when they do, a density function might not be unique.

Weighted measures defined using a weight function integrating to one
yield probability measures. Let ν be a measure on (S,S) and let f : S →
[0,∞] be a measurable function such that

∫
S
f dν = 1. Proposition 5.4

implies that µ(B) =
∫
B
f dν is a probability measure on (S,S). We say that

f is a density of µ with respect to reference measure ν. Note that ν does not
need to be a finite measure.

5.6 Integrating against the Lebesgue measure

A bounded function f : [a, b]→ R is called Riemann-integrable when its Rie-
mann integral ∫ b

a

f(x) dx,

exists as a well-defined real number. The following key result tells us how
the classical Riemann integral coincides with the modern definition of the
integral against the Lebesgue measure λ on the real line.

Theorem 5.12. A bounded measurable function f : [a, b]→ R is Riemann
integrable if and only if f is continuous at λ-almost every point [a, b], and
in this case ∫ b

a

f(x) dx =

∫
[a,b]

f dλ.

Todo: Put proof to appendix, can be omitted from main text.

Proof. Let f : [a, b] → R be a bounded measurable function. Then there
exists [Rud76, Theorem 11.33] a nested sequence An of finite partitions of
[a, b] into intervals such that the lower and upper Riemann integrals of f
equal

R−(f) = lim
n→∞

λ(Ln), R+(f) = lim
n→∞

λ(Un), (5.7)
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where Ln, Un : [a, b]→ R are finite-range measurable functions given by

Ln =
∑
A∈An

(
inf
s∈A

f(s)
)

1A, Un =
∑
A∈An

(
sup
s∈A

f(s)
)

1A.

Then functions Ln, Un are bounded by

L1 ≤ L2 ≤ · · · ≤ f ≤ · · · ≤ U2 ≤ U1. (5.8)

As a consequence, the pointwise limits L = limn Ln and U = limn Un are well
defined bounded real functions on [a, b].

Because pointwise limits of measurable functions are measurable (Propo-
sition 3.9), we see that L,U : [a, b] → R are measurable. We also see from
(5.8) that L ≤ f ≤ U , so that the monotonicity (Proposition 4.9) implies
that λ(L) ≤ λ(f) ≤ λ(U). Because Ln ↑ L and Un ↓ U , monotone continuity
(Proposition 4.5) implies that λ(Ln) ↑ λ(L) and λ(Un) ↓ λ(U). In light (5.7),
we conclude that

R−(f) = λ(L), R+(f) = λ(U). (5.9)

Let C be the set of points in [a, b] at which f is continuous, and let B the
set of points that appear as a boundary point of an interval in An for some n.
By inspecting the proof [Rud76, Theorem 11.33], one may check that for any
x ∈ Bc, x ∈ C if and only if L(x) = U(x). Therefore, C∩Bc = {L = U}∩Bc.
With a little work one may check that C is a measurable set (Exercise 5.21).
Furthermore, λ(B) = 0 implies that

λ(C) = λ({L = U} ∩Bc) = λ({L = U}).

By taking complements, it follows that

λ(Cc) = λ({L ̸= U}).

By definition, f is Riemann integrable if and only if R−(f) = R+(f). By
(5.9), this is equivalent to λ(L) = λ(U), which is further equivalent to λ(U −
L) = 0. Because U − L ≥ 0, Proposition 5.1 implies that λ({L ̸= U}) = 0.
Hence f is Riemann integrable if and only if λ(Cc) = 0. The first claim
follows.

Assume now that f is bounded, measurable, and Riemann integrable.
Then the Riemann integral of f equals

∫ b

a
f(x)dx = R−(f) = λ(L). We saw

above that then λ(L) = λ(U), so that λ({L ̸= U}) = 0. Because L ≤ f ≤ U ,
it follows that {f ̸= L} ⊂ {L ̸= U}, so that λ({f ̸= L}) = 0. Hence, by
Proposition 5.3, ∫ b

a

f(x)dx = λ(L) = λ(f).
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� The integral of a Riemann integrable measurable function against the
Lebesgue measure corresponds to the classical Riemann integral.

Example 5.13. Compute the integral
∫
(0,1]

x−αλ(dx) for α ̸= 1. By mono-

tone continuity of integration (Theorem 4.5), and noting that x−α1[1/n,1] ↑
x−α1(0,1], we see that∫

(0,1]

x−αλ(dx) = lim
n→∞

∫
[1/n,1]

x−αλ(dx).

Because x−α is continuous on the closed interval [1/n, 1], we see (Theo-
rem 5.12) that∫

[1/n,1]

x−αλ(dx) =

∫ 1

1/n

x−αdx =

∣∣∣∣1
1/n

x1−α

1− α
=

1− (1/n)1−α

1− α
.

Hence ∫
(0,1]

x−αλ(dx) = lim
n→∞

1− (1/n)1−α

1− α
=

{
1

1−α
, α < 1,

∞, α > 1.

5.7 Integrating against the law

Let X be a random variable defined on a probability space (Ω,A,P) and
taking values in a measurable space (S,S). Given a measurable function
g : S → R̄, we may interpret g(X) as a random variable ω 7→ g(X(ω)). We
will prove that, under mild regularity,

Eg(X) =

∫
S

g(x)µ(dx)

where µ = P ◦X−1 is the law of X.

Theorem 5.14. For any random variable X : Ω → S with law PX and
any measurable function g : S → R̄,

Eg(X) =

∫
S

g(x)PX(dx). (5.10)

Proof. (i) Consider first the case in which g = 1A is the indicator function
of a measurable set A ∈ S. Then g(X(ω)) = 1A(X(ω)) = 1X−1(A)(ω). Hence
the left side of (5.10) equals

Eg(X) = E1X−1(A) = P(X−1(A)),
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and the right side of (5.10) equals∫
S

1A dPX = PX(A).

We see that (5.10) holds because PX(A) = P(X−1(A)) by the definition of
PX .

(ii) Assume that g is nonnegative with a finite range. Then g =
∑m

i=1 ai1Ai
.

By linearity and (i), we find that

Eg(X) =
m∑
i=1

aiE1X−1(A) =
m∑
i=1

aiP(X−1(A)) =

∫
S

g(x)PX(dx).

(iii) Assume now that g : S → R̄+. Let gn be nonnegative finite-range
measurable functions such that gn ↑ g. Then by (ii) and the monotone
continuity of integration,

Eg(X) = lim
n→∞

Egn(X) = lim
n→∞

∫
S

gn(x)PX(dx) =

∫
S

g(x)PX(dx).

(iv) Assume now that g : S → R̄ is general. By (iii), we see that

Eg+(X) =

∫
S

g+(x)PX(dx),

Eg−(X) =

∫
S

g−(x)PX(dx).

We find that E|g(X)| < ∞ iff both Eg+(X),Eg−(X) are finite. This is
equivalent to both

∫
S
g+(x)PX(dx) and

∫
S
g−(x)PX(dx) being finite. This is

equivalent to
∫
S
|g(x)|PX(dx) being finite. Todo: Finish this part .

Todo: Add examples.

5.8 Exercises

Exercise 5.15 (Density of a nonstandard parametric family). The proba-
bility measure µp,t in Exercise 3.16 admits a probability density function f
with respect to the measure ν = δ0 + λ on (R,B(R)), where δ0 is the Dirac
measure at 0, and λ is the Lebesgue measure on the real line.

(a) Determine an expression for f .
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(b) Is the probability density function unique?

Exercise 5.16 (Almost surely finite random variable). Let X : Ω → R̄+ be
a random variable defined on a probability space (Ω,A,P).

(a) Prove that E(X) <∞ implies that X <∞ almost surely.

(b) Is the converse implication true?

Exercise 5.17 (Chained densities). Let µ0, µ1, µ2 be probability measures on
a measurable space (Ω,A). Assume that f1 is a probability density function
of µ1 with respect to µ0, and f2 is a probability density function of µ2 with
respect to µ1.

(a) Does µ2 admit a probability density function with respect to µ0? If yes,
explain how the density function may be determined using f0 and f1. If
no, explain why.

(b) Do the conclusions of (a) extend to general measures that are not neces-
sarily probability measures?

Exercise 5.18 (Power integrals). Compute the values of the integrals
∫
[1,∞)

x−α λ(dx)

and
∫
(0,∞)

x−α λ(dx) for all α ∈ (0,∞). Proceed rigorously, as in Exam-

ple 5.13.
Hint. [1,∞) = ∪∞n=1[1, n] and (0,∞) = ∪∞n=1[1/n, n].

Exercise 5.19. Prove that the set C in the proof of Theorem 5.12 is a Borel
set. (Hint B is a countable set.) Also prove that λ(Cc) = λ({L ̸= U}).

Exercise 5.20 (Almost sure events). Let A1, A2 ⊂ Ω be events that occur
almost surely.

(a) Prove that also the event A1 ∪ A2 occurs almost surely.

(b) Does the same conclusion also hold for the union of a countable list of
events A1, A2, . . . ? Justify your answer.

(c) Does the same conclusion also hold for the union of an uncountably
infinite set of events Ai, i ∈ I? Justify your answer.

Exercise 5.21. Prove that the set C in the proof of Theorem 5.12 is mea-
surable.



Chapter 6

Multivariate random variables

Multivariate random variables, or random vectors, are random variables with
multiple coordinates or components. The components of a random vector can
be stochastically dependent or independent. Tensor products of measures
form the basic building block for constructing probabilistic models.

Key concepts: product measure, product sigma-algebra, random vector,
convolution

Learning outcomes:

• Learn to work with product measures and their densities.

• Learn to apply Fubini theorem to change the order of integration.

Prerequisites: Previous chapters.
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6.1 Product of sigma-algebras

In multivariate probability and statistics we often work with products of two
or more measurable spaces. Given measurable spaces (S1,S1) and (S2,S2),
the Cartesian product of sets S1 and S2 is denoted by

S1 × S2 = {(s1, s2) : s1 ∈ S1, s2 ∈ S2}.

We also need to define a sigma-algebra on the product space S1 × S2. It
is natural to require that the coordinate projection maps πi : S1 × S2 → Si

defined by

π1((s1, s2)) = s1,

π2((s1, s2)) = s2,

should be measurable functions. Then all preimages π−1
1 (B1) with B1 ∈ S1

and π−1
2 (B2) with B2 ∈ S2 should be measurable sets in S1 × S2. In other

words, the set families π−1
i (Si) = {π−1

i (B) : B ∈ Si} should be contained in
the sigma-algebra on S1 × S2. The product sigma-algebra

S1 ⊗ S2 = σ(π−1
1 (S1) ∪ π−1

2 (S2)) (6.1)

is by definition the smallest sigma-algebra on S1×S2 such that the projection
maps π1, π2 are measurable.

� S1 ⊗ S2 is the sigma-algebra on S1 × S2 that contains the preimages
of π1 and π2, complements and countable intersections and unions thereof,
complements and countable intersections and unions thereof, and so on.

Another natural candidate for a sigma-algebra on the product space would
be the family of sets B1 × B2 with B1 ∈ S1 and B2 ∈ S2. However, this set
family is not in general closed under complement nor countable union. The
following result confirms that if we extended this set family into a sigma-
algebra, we obtain the same sigma-algebra as above.

Proposition 6.1. The set family C = {B1 × B2 : B1 ∈ S1, B2 ∈ S2} is a
generator of S1 ⊗ S2.

Proof. (i) Any set in C can be written as

B1 ×B2 = (B1 × S2) ∩ (S1 ×B2) = π−1
1 (B1) ∩ π−1

2 (B2)
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with B1 ∈ S1 and B2 ∈ S2. Because π−1
1 (B1) and π−1

2 (B2) belong to S1⊗S2,
the above equality implies that so does B1 × B2. Therefore, C ⊂ S1 ⊗ S2,
and in particular, σ(C) ⊂ S1 ⊗ S2.

(ii) Any set in π−1
1 (S1) can be written as

π−1
1 (B1) = B1 × S2

for some B1 ∈ S1. Because S2 ∈ S2, we conclude from the above equality
that π−1

1 (B1) ∈ C. Therefore, π−1
1 (S1) ⊂ C. A similar computation implies

that also π−1
2 (S2) ⊂ C, so that π−1

1 (S1) ∪ π−1
2 (S2) ⊂ C. As a consequence,

S1 ⊗ S2 = σ(π−1
1 (S1) ∪ π−1

2 (S2)) ⊂ σ(C).

� Products of measurable sets B1 ×B2 are sometimes called measurable
rectangles, although geometrically they might appear more like barcodes.

6.2 Vector-valued functions

Let (S0,S0), (S1,S1), (S2,S2) be measurable spaces. Unless otherwise men-
tioned, a product space Si × Sj will always be equipped with the product
sigma-algebra Si ⊗ Sj. A vector-valued function f : S0 → S1 × S2 is charac-
terised by the coordinate functions f1 = π1 ◦ f and f2 = π2 ◦ f , so that the
output values of f can be represented as

f(ω) = (f1(ω), f2(ω)).

The following result provides a simple way to check whether or not the func-
tion f is measurable.

Proposition 6.2. A function f : S0 → S1 × S2 is measurable if and only
if its coordinate functions f1 = π1 ◦ f and f2 = π2 ◦ f are measurable.

Proof. By definition (6.1), the set family C = π−1
1 (S1)∪π−1

2 (S2) is a generator
of S1 ⊗ S2. Therefore, by Proposition 3.3, f is S0/(S1 ⊗ S2)-measurable if
and only if f−1(C) ∈ S0 for all C ∈ C. Because all sets in C are either of the
form C = π−1

1 (B) for some B ∈ S1 or C = π−1
2 (B) for some B ∈ S2, we see

that

f is S0/(S1 ⊗ S2)-measurable

⇐⇒ f−1(C) ∈ S0 for all C ∈ C
⇐⇒ f−1(π−1

i (B)) ∈ S0 for all B ∈ Si and for all i ∈ {1, 2}
⇐⇒ (πi ◦ f)−1(B) ∈ S0 for all B ∈ Si and for all i ∈ {1, 2}
⇐⇒ πi ◦ f is S0/Si-measurable for all i ∈ {1, 2}.
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From now on, unless otherwise mentioned, S1 × S2 is always considered
a measurable space equipped with the product sigma-algebra S1 ⊗ S2. The
proof of the following simple statement is harder that what one might expect,
and can be skipped without fear of losing probabilistic intuition.

� A measurable function on S1 × S2 remains measurable if we freeze one
of the input variables.

Proposition 6.3. The following functions are measurable:

(i) s1 7→ (s1, s2), for any s2.

(ii) s2 7→ (s1, s2), for any s1.

Proof. (i) Fix s2 ∈ S2 and consider a function g : S1 → S1 × S2 defined by
g(s1) = (s1, s2). Its coordinate functions are g1(s1) = s1 and g2(s1) = s2.
The first coordinate function g1 : S1 → S1 is obviously measurable, being the
identity function. The second coordinate function g2 : S1 → S2 is measurable,
being a constant function. Proposition 6.2 now implies that g is measurable.

(ii) Analogous to the proof of (i).

Proposition 6.4. For any measurable function f : S1 × S2 → S3, the
following functions are measurable:

(i) s1 7→ f(s1, s2), for any s2.

(ii) s2 7→ f(s1, s2), for any s1.

Proof. (i) Fix s2 ∈ S2 and note that the function g : S1 → S1 × S2 defined
by g(s1) = (s1, s2) is measurable by Proposition 6.3. Because compositions
of measurable functions are measurable (Proposition 3.5), we find that the
function f ◦ g : S1 → S3 is measurable. This function, given by (f ◦ g)(s1) =
f(s1, s2), is the one that we wanted to prove measurable.

(ii) Analogous to the proof of (i).

Proposition 6.5. For any measurable function f : S1×S2 → R̄+ and any
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finite measures µ1 and µ2,

s1 7→
∫
S2

f(s1, s2)µ2(ds2) is measurable, (6.2)

s2 7→
∫
S1

f(s1, s2)µ1(ds1) is measurable. (6.3)

This is a difficult proof that could go to the Appendix (can be skipped).

Proof. By Proposition 6.4, the function s2 7→ f(s1, s2) is measurable for every
s1. Therefore, the function

g(s1) =

∫
S2

f(s1, s2)µ2(ds2)

is well defined. We will next verify that g is measurable.
(i) Assume that f = 1B1×B2 for some B1 ∈ S1 and B2 ∈ S2. Because

1B1×B2(s1, s2) = 1B1(s1)1B2(s2), we see that

g(s1) =

∫
S2

1B1(s1) 1B2(s2)µ2(ds2) = 1B1(s1)µ2(B2).

This indicates that g is a constant multiple of the indicator function 1B1 .
Therefore, g is measurable.

(ii) Let us verify that g is measurable whenever f = 1B for some B ∈
S1 ⊗ S2. To this end, freeze a value s2 ∈ S2, and define

G =

{
B ∈ S1 ⊗ S2 : s1 7→

∫
S2

1B(s1, s2)µ2(ds2) is measurable

}
.

Part (i) tells us that the set family C = {B1 × B2 : B1 ∈ S1, B2 ∈ S2} is
contained in G. We will next verify the following:

• G is closed under subset difference. If B,C ∈ G are such that B ⊂ C,
then by writing 1C\B = 1C − 1B, and noting that the functions s1 7→
1B(s1, s2) and s2 7→ 1C(s1, s2) are in L1(µ2), we see that∫
S2

1C\B(s1, s2)µ2(ds2) =

∫
S2

1C(s1, s2)µ2(ds2)−
∫
S2

1B(s1, s2)µ2(ds2).

Because terms on the right, considered as functions of s1, are mea-
surable, and because linear combinations of measurable functions are
measurable, it follows that also the term on the left is measurable as a
function of s1. Therefore, C \B ∈ G.



CHAPTER 6. MULTIVARIATE RANDOM VARIABLES 72

• G is closed under increasing set limit. If Bn ∈ G are such that Bn ↑ B.
Then 1Bn ↑ 1B pointwise on S1 × S2, so that the functions fn(s2) =
1Bn(s1, s2) and f(s2) = 1B(s1, s2) and satisfy fn ↑ f pointwise. By
monotone continuity, it follows that µ2(fn) ↑ µ2(f). That is,∫

S2

1B(s1, s2)µ2(ds2) = lim
n→∞

∫
S2

1Bn(s1, s2)µ2(ds2).

The above equality means that the left side, considered as a function
of s1, is a pointwise limit of measurable functions, and therefore mea-
surable. Therefore, B ∈ G.

The above facts indicate that G is a Dynkin class. The monotone class
theorem (Theorem 2.8) now implies that G ⊃ S1⊗S2. Therefore, (6.2) holds
for all indicator functions 1B with B ∈ S1 ⊗ S2.

(iii) Assume now that f is measurable and has a finite range. Then
f =

∑n
i=1 bi1Bi

for some constants bi ∈ R̄+ and sets Bi ∈ S1 ⊗ S2. Then
with the help of (ii), we see that g(s1) =

∑n
i=1 bi

∫
S2

1Bi
(s1, s2)µ(ds2) is a

linear combination of measurable functions. Because linear combinations of
measurable functions are measurable, we conclude that (6.2) holds.

(iv) For a general measurable function f : S1 × S2 → R̄+ there exist
fn ↑ f which are finite-range and measurable. Then with the help of (iii)
and monotone continuity, we see that g(s1) = limn→∞

∫
S2
fn(s1, s2)µ(ds2)

is a pointwise limit of measurable functions. Because limits of measurable
functions are measurable, we conclude that (6.2) holds.

We have proved (6.2). The other statement (6.3) follows analogously.

6.3 Product of measures

Çınlar [Çın11] does kernels first, then Fubini, saves effort.

A measure is sigma-finite if there exists a sequence of measurable sets
A1, A2, . . . such that ∪nAn = S and µ(An) <∞ for all n. All finite measures,
and in particular all probability measures, are sigma-finite. Examples of
infinite but sigma-finite measures include the Lebesgue measure, and the
counting measure on a countably infinite space (homework).

The product measure of sigma-finite measures µ1 and µ2 is a set function
on S1 ⊗ S2 defined by

(µ1 ⊗ µ2)(B) =

∫
S1

(∫
S2

1B(s1, s2)µ2(ds2)

)
µ1(ds1). (6.4)



CHAPTER 6. MULTIVARIATE RANDOM VARIABLES 73

Proposition 6.6. The product measure µ1⊗ µ2 is the unique measure on
(S1 × S2,S1 ⊗ S2) such that

(µ1 ⊗ µ2)(B1 ×B2) = µ1(B1)µ2(B2) (6.5)

for all B1 ∈ S1 and B2 ∈ S2.

Proof. Let us first verify that µ1 ⊗ µ2 is indeed a measure. For any B ∈
S1 ⊗ S2, the right side in (6.4) is a well-defined element in R̄+ because:

(i) s2 7→ 1B(s1, s2) is a measurable function from S2 into R̄+ for any fixed
s1 ∈ S1 (see Proposition 6.3), so that the inner integral in (6.4) assigns
each s1 ∈ S1 a well-defined value in R̄+.

(ii) s1 7→
∫
S2

1B(s1, s2)µ2(ds2) is a measurable function from S1 into R̄+

(see Proposition 6.5), so that the outer integral in (6.4) yields a well-
defined value in R̄+.

Observe next that µ1 ⊗ µ2(∅) = 0 because 1∅ equals the zero function. To
verify countable disjoint additivity, let B1, B2, . . . be disjoint measurable sets
in S1 ⊗ S2. Observe that

1⋃∞
i=1 Bi

(s1, s2) =
∞∑
i=1

1Bi
(s1, s2) = lim

n→∞

n∑
i=1

1Bi
(s1, s2).

Therefore, by monotone continuity (Theorem 4.5) and linearity (Proposi-
tion 4.6), we see that

(µ1 ⊗ µ2)

( ∞⋃
i=1

Bi

)
=

∫
S1

(∫
S2

lim
n→∞

n∑
i=1

1Bi
(s1, s2)µ2(ds2)

)
µ1(ds1)

cont
= lim

n→∞

∫
S1

(∫
S2

n∑
i=1

1Bi
(s1, s2)µ2(ds2)

)
µ1(ds1)

lin
= lim

n→∞

n∑
i=1

∫
S1

(∫
S2

1Bi
(s1, s2)µ2(ds2)

)
µ1(ds1).

Because the last expression above equals
∑∞

i=1(µ1 ⊗ µ2)(Bi), we conclude
that µ1 ⊗ µ2 is a measure.

(iii) Let us verify uniqueness. Assume that µ and ν are measures on
(S1×S2,S1⊗S2) both satisfying (6.5). Because µ1 and µ2 are sigma-finite, we
may fix measurable sets S1,n ↑ S1 and S2,n ↑ S2 such that µ1(S1,n) <∞ and
µ2(S2,n) < ∞ for all n. Define truncated measures µ(n)(B) = µ(B ∩ (S1,n ×
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S2,n)) and ν(n)(B) = ν(B∩(S1,n×S2,n)). Then we find that µ(n) and ν(n) agree
on the set family C = {B1×B2 : B1 ∈ S1, B2 ∈ S2}, and both measures have
total mass equal to µ1(S1,n)µ2(S2,n) < ∞. If the the total mass is nonzero,
then we may normalise these measures to probability measures, and Dynkin’s
identification theorem (Theorem 2.7) then implies that µ(n) = ν(n). If the
the total mass is zero, then trivially µ(n) = ν(n). For any measurable set B,
the fact B ∩ (S1,n × S2,n) ↑ B combined with the monotone continuity of
measures (Proposition 1.5) then implies that

µ(B) = lim
n→∞

µ(n)(B) = lim
n→∞

ν(n)(B) = ν(B).

Hence µ = ν, and indeed both must be equal to µ1 ⊗ µ2.

6.4 Integrating against the product measure

The following important result tells us two things: (i) how to integrate
against a product measure, and (ii) when can the order of integration be
changed in iterated integrals. The version of the result for integrable func-
tions is called Fubini’s theorem1. and the version of the result of nonnegative
functions is called Tonelli’s theorem2.

Theorem 6.7 (Fubini–Tonelli theorem). For any sigma-finite measures
µ1, µ2 on measurable spaces (S1,S1), (S2,S2), and for any measurable func-
tion f : S1 × S2 → R̄ such that either f ≥ 0 or f ∈ L1(µ1 ⊗ µ2),∫

S1×S2

f d(µ1 ⊗ µ2) =

∫
S1

(∫
S2

f(s1, s2)µ2(ds2)

)
µ1(ds1). (6.6)

and∫
S1

(∫
S2

f(s1, s2)µ2(ds2)

)
µ1(ds1) =

∫
S2

(∫
S1

f(s1, s2)µ1(ds1)

)
µ2(ds2).

(6.7)

Proof. (i) Assume first that f = 1B for some B ∈ S1 ⊗ S2. Then (6.6) is
valid by the defining formula (6.4).

(ii) Assume that f ≥ 0 is measurable with a finite range. Then we may
write f =

∑n
i=1 bi1Bi

where {b1, . . . , bn} is an enumeration of the range of f ,

1Guido Fubini (1879 – 1943) PhD 1900 from Pisa.
2Leonida Tonelli (1885–1946). PhD 1907 from Bologna.
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and Bi = f−1({bi}). Then (6.6) follows by applying (i) and the linearity of
nonnegative integration (Proposition 4.6).

(iii) Assume that f ≥ 0 is measurable. Let fn ≥ 0 be finite-range mea-
surable functions such that fn ↑ f (these exist by Proposition 4.1). Then by
applying (ii) and the monotone continuity of nonnegative integration (The-
orem 4.5), we conclude that (6.6) holds for an arbitrary measurable f ≥ 0.

(iv) Assume that f : S → R satisfies f ∈ L1(µ1 ⊗ µ2). Denote the inner
integral in (6.6) by

Jf (s1) =

∫
S2

f(s1, s2)µ2(ds2).

By definition, Jf (s1) = Jf+(s1)− Jf−(s1), where

Jf±(s1) =

∫
S2

f±(s1, s2)µ2(ds2).

It is possible that Jf±(s1) are both infinite for some values of s1, in which
case Jf (s1) is ill defined, and we assign Jf (s1) = −∞ by our convention.
Nevertheless, the set of such input values s1 is negligible, as we will next
verify. Note that the functions Jf± : S1 → R̄+ are measurable due to Propo-
sition 6.5, and we see by (iii) that∫

S1

Jf±(s1)µ1(ds1) =

∫
S1×S2

f± d(µ1 ⊗ µ2) < ∞.

As a consequence, the set A = A+ ∩ A− with A± = {s1 : Jf±(s1) < ∞}
satisfies µ1(A

c) = 0. It follows that the functions 1AJ
f± are real valued and

belong to L1(µ1). Because L1(µ1) is a real vector space (Proposition 4.11),
it follows that also the function 1AJ

f = 1AJ
f+ − 1AJ

f− is real valued and in
L1(µ1), and furthermore,∫

S1

1AJ
f dµ1 =

∫
S1

1AJ
f+ dµ1 −

∫
S1

1AJ
f− dµ1.

Because µ(Ac) = 0, we may omit the indicator 1A from each integral in the
above equality (Proposition 5.3), and it follows that∫

S1

Jf dµ1 =

∫
S1

Jf+ dµ1 −
∫
S1

Jf− dµ1

=

∫
S1

f+ d(µ1 ⊗ µ2)−
∫
S1

f− d(µ1 ⊗ µ2)

=

∫
S1

f d(µ1 ⊗ µ2).
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Hence (6.6) is valid for all f ∈ L1(µ1 ⊗ µ2).
(v) Let us now prove (6.7). Define two set functions on S1 ⊗ S2 by

µ(B) =

∫
S1

(∫
S2

1B(s1, s2)µ2(ds2)

)
µ1(ds1), (6.8)

ν(B) =

∫
S2

(∫
S1

1B(s1, s2)µ1(ds1)

)
µ2(ds2). (6.9)

Then µ = µ1 ⊗ µ2 equals the product measure in (6.4). Proposition 6.6 tells
us that µ is a measure on (S1 × S2,S1 ⊗ S2), and (6.6) implies that∫

S1

(∫
S2

f(s1, s2)µ2(ds2)

)
µ1(ds1) =

∫
S1×S2

f dµ. (6.10)

By applying the same results with the roles of µ1 and µ2 interchanged, we
see that also ν is a measure on (S1 × S2,S1 ⊗ S2), and that∫

S2

(∫
S1

f(s1, s2)µ1(ds1)

)
µ2(ds2) =

∫
S1×S2

f dν. (6.11)

By substituting B = B1 ×B2 into (6.8)–(6.9), we see that

µ(B1 ×B2) = µ1(B1)µ2(B2) = ν(B1 ×B2)

for all B1 ∈ S1 and B2 ∈ S2. Proposition 6.6 states that µ1⊗µ2 is the unique
measure with this property. Therefore, µ and ν are both equal to µ1 ⊗ µ2,
and it follows that the integrals in (6.10)–(6.11) are all equal to each other.

� The first integral above is a double integral, and the latter two are
iterated integrals.

� For a nonnegative measurable function f : S → R̄+, we may always
swap the order of the iterated integrals

∫
S1

∫
S2

and
∫
S2

∫
S1
.

� For a signed measurable function f : S → R̄, we apply Fubini–Tonelli
theorem twice: First to the nonnegative function |f | to verify that f is
integrable, and then to the function f itself to swap the order of the iterated
integrals
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6.5 Independent random variables

Random variables X1 : Ω → S1 and X2 : Ω → S2 defined on a probability
space (Ω,A,P) are called stochastically independent if

P({X1 ∈ B1} ∩ {X2 ∈ B2}) = P({X1 ∈ B1})P({X2 ∈ B2}) (6.12)

for all B1 ∈ S1 and B2 ∈ S2. This is denoted by X1 ⊥⊥ X2.
New result: Added Thu 26 Sep 2024

Proposition 6.8. X1 ⊥⊥ X2 if and only if f1(X1) ⊥⊥ f2(X2) for all mea-
surable f1 : S1 → R̄+ and f2 : S2 → R̄+.

� Independence is preserved under deterministic transformations.

Proof. (i) Assume that f1(X1) ⊥⊥ f2(X2) for all measurable f1, f2. Fix Ai ∈
Si and define fi = 1Ai

. Then

P(X1 ∈ A1, X2 ∈ A2) = P(f1(X1) = 1, f2(X2) = 1)

= P(f1(X1) = 1)P(f2(X2) = 1)

= P(X1 ∈ A1)P(X2 ∈ A2)

confirms that X1 ⊥⊥ X2.
(ii) Assume that X1 ⊥⊥ X2. Fix measurable functions fi : Si → R̄+. Then

for any measurable sets Bi ⊂ R̄+,

P(f1(X1) ∈ B1, f2(X2) ∈ B2) = P(X1 ∈ f−1
1 (B1), X2 ∈ f−1

2 (B2))

= P(X1 ∈ f−1
1 (B1))P(X2 ∈ f−1

2 (B2))

= P(f1(X1) ∈ B1)P(f2(X2) ∈ B2).

Hence f1(X1) ⊥⊥ f2(X2).

Proposition 6.9. X1 and X2 are independent if and only if the law
P(X1,X2) of the random vector X = (X1, X2) factorises according to

PX = PX1 ⊗ PX2 ,

where PX1 and PX2 are the laws of X1 and X2.
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� Random variables are independent if and only if their joint law factorises
into a product measure of the laws of the individual random variables.

Proof. Observe first that the set X−1
1 (B1) ∩X−1

2 (B2) can be written as

{X1 ∈ B1} ∩ {X2 ∈ B2} = {ω : X1(ω) ∈ B1 and X2(ω) ∈ B2}
= {ω : (X1(ω), X2(ω)) ∈ B1 ×B2}
= {ω : X(ω) ∈ B1 ×B2}
= X−1(B1 ×B2).

(i) Assume that PX = PX1 ⊗ PX2 . Then for any B1 ∈ S1 and B2 ∈ S2,

P({X1 ∈ B1} ∩ {X2 ∈ B2}) = P(X−1(B1 ×B2))

= PX(B1 ×B2)

= (PX1 ⊗ PX2)(B1 ×B2)

(6.5)
= PX1(B1)PX2(B2)

= P({X1 ∈ B1})P({X2 ∈ B2}).

(ii) Assume that X1 and X2 are independent. Therefore, the left side of
(6.12) equals

P({X1 ∈ B1} ∩ {X2 ∈ B2}) = PX(B1 ×B2).

On the other hand, the left side of (6.12) equals

P(X−1
1 (B1))P((X−1

2 (B2)) = PX1(B1)PX2(B2).

By plugging these formulas into (6.12), we see that the probability measure
PX satisfies

PX(B1 ×B2) = PX1(B1)PX2(B2)

for all B1 ∈ S1 and B2 ∈ S2. Proposition 6.6 tells us that the product
measure PX1 ⊗ PX2 is the unique measure on (S1 × S2,S1 ⊗ S2) with the
above property. Therefore, we conclude that PX = PX1 ⊗ PX2 .

Proposition 6.10. Let X1 and X2 be independent random variables such
that the law of Xi admits a density function fi with respect to a reference
measure νi. Then the law of (X1, X2) admits a density function f(s1, s2) =
f(s1)f(s2) with respect to ν1 ⊗ ν2.
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Proof. The independence of X1 and X2 implies (Proposition 6.9) that their
joint law factorises according to PX1,X2 = PX1 ⊗ PX2 . By Fubini–Tonelli
(Theorem 6.7) and Proposition 5.8,

PX1,X2(B) =

∫
S1×S2

1B(s1, s2)PX1,X2(ds1, ds2)

=

∫
S1×S2

1B(s1, s2) (PX1 ⊗ PX2)(ds1, ds2)

Fub
=

∫
S1

(∫
S2

1B(s1, s2)PX2(ds2)

)
PX1(ds1)

=

∫
S1

(∫
S2

1B(s1, s2)f2(s2)ν(ds2)

)
f1(s1)ν1(ds1)

Fub
=

∫
S1×S2

1B(s1, s2)f1(s1)f2(s2) (ν1 ⊗ ν2)(ds1, ds2).

Therefore,

PX1,X2(B) =

∫
B

f(s1, s2) (ν1 ⊗ ν2)(ds1, ds2).

Example 6.11. Let X1, X2 independent real-valued random variables with
laws admitting densities f1, f2 with respect to the Lebesgue measure on R.
Then f(x1, x2) = f1(x1)f2(x2) is a density function of the law of the random
vector (X1, X2) with respect to the 2-dimensional Lebesgue measure λ2 =
λ⊗ λ on R2. In particular, for any Borel set B ⊂ R2,

P((X1, X2) ∈ B) =

∫
R

∫
R

1B(x1, x2) f1(x1)f2(x2) dx1dx2,

where simply write dx1 instead of λ(dx1).

6.6 Sum of independent random variables

The convolution of probability measures µ and ν on (R,B(R)) is a set function
defined by

(µ ∗ ν)(B) =

∫
R

∫
R

1B(x+ y)µ(dx) ν(dy).
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Proposition 6.12. The convolution of probability measures on (R,B(R))
is a probability measure on (R,B(R)).

Proof. One may prove the claim directly using the linearity and monotone
continuity of nonnegative integration. Here is an alternative, perhaps more
elegant, proof. Denote h(x, y) = x + y. We note that for any measurable
B ⊂ R,

(µ ∗ ν)(B) =

∫
R2

1B(x+ y) (µ⊗ ν)(dx, dy)

=

∫
R2

(1B ◦ h)(x, y) (µ⊗ ν)(dx, dy)

=

∫
R

1B(z) ((µ⊗ ν) ◦ h−1)(dz)

= ((µ⊗ ν) ◦ h−1)(B).

Therefore, µ ∗ ν = (µ ⊗ ν) ◦ h−1 is just the pushforward of the probability
measure µ ⊗ ν on R2 by the measurable function h : R2 → R. Because
pushforwards of probability measures are probability measures, the claim
follows.

The following result gives more probabilistic insight.

Proposition 6.13. The law of the sum X + Y of independent real-valued
random variables is given by PX+Y = PX ∗ PY .

Proof. Let X and Y be independent. Then their joint law factorises as
PX,Y = PX ⊗ PY . It follows that

P(X + Y ∈ B) =

∫
S1×S2

1B(x+ y)PX,Y (dx, dy)

=

∫
S1×S2

1B(x+ y) (PX ⊗ PY )(dx, dy)

Fub
=

∫
S1

∫
S2

1B(x+ y)PX(dx)PY (dy)

We conclude that Law(X + Y ) equals the convolution PX ∗ PY .
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� When X and Y are independent, the law of X + Y is fully determined
by the laws PX and PY by convolution. In general, this is not the case, and
the law of the sum is also affected by the stochastic dependence structure
between X and Y .

Example 6.14. Let X, Y independent real-valued random variables with
laws PX and PY admitting densities f, g with respect to the Lebesgue measure
on R. Then the law of X + Y equals the convolution PX+Y = PX ∗ PY . By
Fubini–Tonelli theorem, the convolution may be computed as

(PX ∗ PY )(B) =

∫
R

(∫
R

1B(x+ y)f(x)λ(dx)

)
g(y)λ(dx)

=

∫
R

(∫
R

1B(x+ y)g(y)λ(dy)

)
f(x)λ(dx).

For any x, the inner integral may be written as∫
R
ϕx(y + x)λ(dy)

where ϕx(y) = 1B(y)g(y − x). Because λ is shift-invariant, we see (Exer-
cise 6.19) that∫

R
ϕx(y + x)λ(dy) =

∫
R
ϕx(y)λ(dy) for all x.

It follows that (again, the integration order does not matter due to Fubini–
Tonelli)

(PX ∗ PY )(B) =

∫
R

(∫
R

1B(x+ y)g(y)λ(dy)

)
f(x)λ(dx)

=

∫
R

(∫
R

1B(y)g(y − x)λ(dy)

)
f(x)λ(dx)

=

∫
B

(f ∗ g)(y)λ(dy),

where the function f ∗ g : R → R+ is defined by (f ∗ g)(y) =
∫
R f(x)g(y −

x)λ(dx). We see that the law of X+Y admits a probability density function
f ∗ g with respect to the Lebesgue measure. The density is called the convo-
lution of functions f and g.
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6.7 Higher-order product sigma-algebras

The product of sets S1, S2, . . . is defined by

S1 × S2 × · · · = {(s1, s2, . . . ) : s1 ∈ S1, s2 ∈ S2, . . . }.

The product sigma-algebra of sigma-algebras S1,S2, . . . is defined by

S1 ⊗ S2 × · · · = σ
(
π−1
1 (S1) ∪ π−1

2 (S2) ∪ · · ·
)
.

The product measure µ1 ⊗ · · · ⊗ µn of sigma-finite measures µ1, . . . , µn is
defined by iteration the construction of n = 2.

Add details, or move to later place.

Example 6.15. The multivariate standard normal distribution is the prob-
ability measure on (Rn,B(Rn)) defined by µn = fn · λn where λn is the
Lebesgue measure on Rn and

fn(x) = (2π)−n/2e−∥x∥2/2, x ∈ Rn.

By writing ∥x∥2 =
∑n

i=1 x
2
i , we see that the probability density function of

µn factorises according to

fn(x) = (2π)−n/2e−
∑n

i=1 x
2
i /2 =

n∏
i=1

(2π)−1/2e−x2
i /2,

so that fn(x) = f1(x1) · · · f1(xn). Hence we find by ref that the n-variate
standard normal distribution is the n-fold tensor product of the univariate
standard normal distribution µn = µ1 ⊗ · · · ⊗ µ1︸ ︷︷ ︸

n

.

6.8 Exercises

Exercise 6.16 (Min and max of random integers). Let Y1 = min{X1, X2}
and Y2 = max{X1, X2}, where X1 and X2 are independent integer-valued
random variables, both distributed according to a probability mass function
f : Z→ [0, 1]. Determine:

(a) The probability mass function of Y1.

(b) The probability mass function of the vector (Y1, Y2).
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Exercise 6.17 (Min and max of random numbers). Let Y1 = min{X1, X2}
and Y2 = max{X1, X2}, where X1 and X2 are independent real-valued ran-
dom variables distributed according to a probability density function f with
respect to the Lebesgue measure on R, so that P(Xi ∈ B) =

∫
B
f(x)λ(dx).

Determine:

(a) The cumulative distribution function of Y1.

(b) The probability density function of Y1 with respect to λ.

(c) A probability density function g : R2 → R+ of the random vector (Y1, Y2)
such that

P((Y1, Y2) ∈ B) =

∫
B

g(y1, y2) dy1dy2.

Hint: Consider the integral
∫
R2 1B(x1 ∧ x2, x1 ∨ x2) f(x1)f(x2) dx1)dx2.

You may split the integral according into two regions based on whether
or not x1 < x2, and apply symmetry.

Exercise 6.18 (Three coins). Let p ∈ [0, 1] and define a probability measure
on ({0, 1}, 2{0,1}) by µ = (1 − p)δ0 + pδ1. Let Ω = {0, 1}3, and define a
probability measure on (Ω, 2Ω) by µ⊗3 = µ⊗ µ⊗ µ.

(a) Compute the probability µ⊗3({0}).

(b) Determine a probability density function for the random variable X(ω) =∑3
i=1 ωi with respect to the counting measure on (Z, 2Z).

(c) Compute the expected value EX.

(d) Can you generalise your results from n = 3 to a general integer n?

Exercise 6.19 (Lebesgue integral of a shifted function). Prove that for every
measurable function f : R→ R̄∫

R
f(x+ t)λ(dx) =

∫
R
f(x)λ(dx) for all t ∈ R,

where λ is the Lebesgue measure on R. You may proceed using the ‘standard
machine’ as follows:

(a) Prove the claim in the special case where f = 1B for some measurable
set B ⊂ R.
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(b) Generalise your result from (a) to the case where f has a finite range.

(c) Generalise your result from (b) to the case where f is a general nonneg-
ative measurable function.

Hint: You may imitate selected parts from the proof of Theorem 6.7. Recall
that the Lebesgue measure is shift invariant.

Exercise 6.20. Prove that B(R)⊗ B(R) = B(R2).

Hint: Every open set in R2 can be written as a union of sets of form (a1, b1)×
(a2, b2) in which a1, b1, a2, b2 are rational numbers.

Exercise 6.21. Let #Z be the counting measure on (Z, 2Z). Prove that
#Z ⊗#Z = #Z2 .



Chapter 7

Second moment analysis

The average 1
n
(X1 + · · ·+Xn) of independent random numbers is a random

variable that is expected to take on values close to its mean when n is large.
In other words, it is expected that the law of 1

n
(X1 + · · ·+Xn) concentrates

most of its mass near its mean. This phenomenon is called concentration
of measure. Most principles of statistical learning, spreading of financial
risk, and thermodynamical equilibria are based on this phenomenon. There
are several methods in probability theory for analysing the concentration of
measure. We get introduced to some of these.

Add: Concentration of mass

7.1 Second-moment method

The second moment method studies square-integrable random variables. A
real-valued random variable is called square integrable if EX2 <∞.

Preliminaries:

• Square-integrable random variables are absolutely integrable: EX2 <
∞ =⇒ E|X| <∞

• When X, Y are square integrable, then XY is absolutely integrable.
(Cauchy–Schwarz, or simpler for independent)

• EXY = EXEY for independent. (easy to do first for nonnegative, then
for signed)

85
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7.2 Jensen’s inequality

A function f : R → R is convex if f((1 − α)x + αy) ≤ (1 − α)f(x) + αf(y)
for all α ∈ [0, 1] and x, y ∈ R. The following important result, known
as Jensen’s inequality , is valid for all integrable random variables X. The
random variable f(X) does not need to be integrable. Jensen’s inequality
actually shows that −∞ < Ef(X) ≤ ∞.

Theorem 7.1 (Jensen’s inequality). For any integrable random variable
X : Ω→ I with values in an interval I ⊂ R,

f(EX) ≤ Ef(X)

for all convex functions f : I → R.

Proof. Because f is convex, there exists a tangent line {(x, y) ∈ R2 : y =
ax+ b} such that

ax+ b ≤ f(x) for all x ∈ I (7.1)

and (7.1) holds as equality for x = EX. (Exercise 7.18 confirms that EX is
a point in I). For example, we may select a = f ′

+(x0) and b = f(x0) − ax0,
where f ′

+(x0) = limh↓0
f(x0+h)−f(x0)

h
is the right-derivative at x0 = EX, which

is well defined whenever EX it not the rightmost point of I (otherwise we
may replace a by the left derivative of f at x0).

By plugging x = X(ω) into (7.1) and integrating against P, the mono-
tonicity of integration (Proposition 4.9) implies that

E(aX + b) =

∫
Ω

(aX + b) dP ≤
∫
Ω

f(X) dP = Ef(X).

By recalling that (7.1) holds as equality for x = EX, and applying the
linearity of integration (Proposition 4.11) to the random variablesX ∈ L1(P),
we find that

f(EX) = aEX + b = E(aX + b).

The claim follows by combining the above two displays.

7.3 Power-integrable random variables

A real-valued random variable is called p-th power integrable if

∥X∥Lp(P) = (E|X|p)1/p
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is finite. The collection of such random variables is denoted Lp(P). Power-
integrable random variables with p = 1 are called integrable, and those with
p = 2 square integrable. The following result implies in particular that
L2(P) ⊂ L1(P).

Proposition 7.2. (E|X|p)1/p ≤ (E|X|q)1/q for all 0 < p ≤ q <∞ and all
R̄-valued random variables, and in particular, E|X| ≤ (EX2)1/2.

� Lp seminorms associated with random variables are ordered in p.

Proof. Jensen’s inequality (Proposition 7.1) applied to the nonnegative ran-
dom variable Y = |X|p with the convex function f(x) = xq/p on R+ implies
that

(E|X|p)q/p = f(EY ) ≤ Ef(Y ) = E|X|q.

The claim follows by raising both sides above to the power 1/q.

Proposition 7.3 (Cauchy–Schwarz inequality). For all random variables
X, Y : Ω→ R̄,

E|XY | ≤ (EX2)1/2(EY 2)1/2.

� Products of square integrable functions are integrable.

� Products of square integrable random variables are integrable random
variables with a finite mean EX.

Proof. We prove Cauchy–Schwarz for all measurable functions, and all mea-
sures µ. To avoid trivialities, let us assume that the right side is fi-
nite. We may assume that the right side is nonzero, because otherwise
(
∫
S
f 2 dµ)1/2 = 0 or (

∫
S
g2 dµ)1/2 = 0 implies (Theorem 5.1) that either f

or g is zero almost everywhere, and this would imply that
∫
S
|fg| dµ = 0.

Let us now assume that ∥f∥2 = (
∫
S
f 2 dµ)1/2 and ∥g∥2 = (

∫
S
g2 dµ)1/2

are finite and strictly positive. By applying the inequality 1
2
(x2 + y2) =

1
2
(x− y)2 + xy ≥ xy, we find that

|f |
∥f∥2

|g|
∥g∥2

≤ 1

2

(
f 2

∥f∥22
+

g2

∥g∥22

)
pointwise.
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Integrating both sides against µ reveals that∫
|fg| dµ
∥f∥2∥g∥2

≤ 1

2

(∫
S
f 2 dµ

∥f∥22
+

∫
S
g2 dµ

∥g∥22

)
= 1,

and the claim follows by multiplying both sides by ∥f∥2∥g∥2.

Proposition 7.4. L2(µ) is a real vector space, and for all f, g ∈ L2(µ),

(i) ∥cf∥L2(µ) = |c| ∥f∥L2(µ) for all c ∈ R,

(ii) ∥f + g∥L2(µ) ≤ ∥f∥L2(µ) + ∥g∥L2(µ).

� Linear combinations of square-integrable random variables are square-
integrable random variables.

Proof. (i) The first claim follows by noting that ∥cf∥2L2(µ) =
∫
S
c2f 2 dµ =

c2∥f∥2L2(µ), and taking square roots.

(ii) Observe that (f + g)2 ≤ f 2 + 2|fg| + g2 pointwise. Monotonicity
(Proposition 4.4) and linearity (Proposition 4.6) combined with the Cauchy–
Schwarz inequality (Proposition 7.3) show that

∥f + g∥2L2(µ) =

∫
(f + g)2 dµ

mon

≤
∫ (

f 2 + 2|fg|+ g2
)
dµ

lin
=

∫
f 2 dµ+ 2

∫
|fg| dµ+

∫
g2 dµ

CS

≤
∫
f 2 dµ+ 2

(∫
f 2 dµ

)1/2(∫
g2 dµ

)1/2
+

∫
g2 dµ

=
(
∥f∥L2(µ) + ∥g∥L2(µ)

)2
,

so the claim follows by taking square roots.

7.4 Independent products

The following result is needed later for proving that independent square-
integrable random variables have zero covariance (Proposition 7.8).
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Proposition 7.5. For all independent random numbers such that either
X, Y ≥ 0 or X, Y ∈ L1(P),

EXY = EX EY. (7.2)

� Independence allows to factorise, also in the case of expected values.

Proof. (i) Assume thatX, Y : Ω→ R̄+ have finite range. ThenX =
∑m

i=1 ai1Ai

and Y =
∑n

j=1 bj1Bj
for some ai, bj ∈ R̄+ with Ai = X−1({ai}) and Bj =

Y −1({bj}). Proposition 4.2 implies that

EX EY =

(
m∑
i=1

aiP(Ai)

)(
n∑

j=1

bjP(Bj)

)
=

m∑
i=1

n∑
j=1

aibjP(Ai)P(Bj).

(7.3)
We also note that

XY =
m∑
i=1

n∑
j=1

aibj1Ai
1Bj

=
m∑
i=1

n∑
j=1

aibj1Ai∩Bj
,

so that by linearity (Proposition 4.6),

EXY =
m∑
i=1

n∑
j=1

aibjE1Ai∩Bj
=

m∑
i=1

n∑
j=1

aibjP(Ai ∩Bj). (7.4)

The independence of X and Y implies that P(Ai ∩ Bj) = P(Ai)P(Bj). By
combining this observation with (7.3) and (7.4), we conclude that (7.2) holds.

(ii) Now consider general random variables X, Y : Ω → R̄+. Fix finite-
range random variables Xn ↑ X and Yn ↑ Y . Then XnYn ↑ XY , and
monotone continuity (Theorem 4.5) implies that

EXY = lim
n→∞

EXnYn
(i)
= lim

n→∞
EXn EYn = EX EY.

Hence (7.2) holds.
(iii) Now consider independent random variables X, Y ∈ L1(P). Then

ϕ(X) ⊥⊥ ψ(Y ) for all measurable functions ϕ, ψ : R→ R+. Then by applying
(ii) we see that Eϕ(X)ψ(Y ) = Eϕ(X)Eϕ(Y ). In particular, ϕ(X)ψ(Y ) ∈
L1(P) for all measurable ϕ, ψ : R → R+ bounded pointwise by ϕ(x) ≤ |x|
and ψ(x) ≤ |x|. It follows that XY ∈ L1(P), and

XY = (X+ −X−)(Y+ − Y−) = X+Y+ +X−Y− −X+Y− −X−Y+,
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where all random variables appearing on the right are in L1(P). Hence by
linearity (Proposition 4.11),

EXY = EX+Y+ + EX−Y− − EX+Y− − EX−Y+

= EX+ EY+ + EX− EY− − EX+ EY− − EX− EY+
= (EX+ − EX−)(EY+ − EY−)

= EX EY.

7.5 Variances and covariances

The variance of a random variable X ∈ L2(P) is defined by

Var(X) = E(X − EX)2.

Proposition 7.2 implies that the mean EX is a well-defined real number
for any X ∈ L2(P). Because L2(P) is a vector space (Proposition 7.4), and
constant random variables are square integrable, we see thatX−EX ∈ L2(P).
Therefore, the variance is a well-defined number in R+.

Proposition 7.6. For any square-integrable random variable, Var(X +
t) = Var(X) and Var(cX) = c2 Var(X) for all t ∈ R and c ∈ R+.

� The variance operator is shift invariant, but not scale invariant.

Proof. Exercise. todo

Proposition 7.7. For any square-integrable random variable, Var(X) = 0
if and only if X = EX almost surely.

� Zero variance means zero randomness.

Proof. Proposition 5.1 implies that E(X−EX)2 = 0 if and only ifX−EX = 0
almost surely.
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The covariance of random variables X, Y ∈ L2(P) is defined by

Cov(X, Y ) = E
(

(X − EX)(Y − EY )
)
.

The Cauchy–Schwarz inequality (Proposition 7.3) implies that Cov(X, Y ) is
a well-defined real number and bounded by

|Cov(X, Y )| ≤ Var(X)1/2 Var(Y )1/2.

Proposition 7.8. Cov(X, Y ) = 0 for independent square-integrable ran-
dom variables.

� Independence implies zero covariance, but not vice versa.

Proof. When X, Y are square integrable, so are the random variables X̃ =
X − EX and Ỹ = Y − EY . In particular, X̃ and Ỹ are independent and in
L1(P). By linearity (Proposition 4.11), EX̃ = 0 and EỸ = 0. With the help
of Proposition 7.5, we find that

Cov(X, Y ) = EX̃Ỹ = EX̃ EỸ = 0.

Proposition 7.9. For all square-integrable random variables Xi, Yj, and
all real numbers ai, bj,

Cov

(
m∑
i=1

aiXi,
n∑

j=1

bjYj

)
=

m∑
i=1

n∑
j=1

aibj Cov(Xi, Yj).

� Covariance is a bilinear functional on L2(P).

Proof. Because L2(P) is a vector space (Proposition 7.4), we see that the
centered random variables X̃i = Xi − EXi and Ỹj = Yj − EYj are square
integrable, and hence integrable (Proposition 7.2). The same conclusions
are true for the random variables X =

∑m
i=1 aiXi and Y =

∑n
j=1 bjYj. By

linearity (Proposition 4.11), we see that

X − EX =
m∑
i=1

aiX̃i, Y − EY =
n∑

j=1

bjỸj.
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By multiplying the above equalities, we find that

(X − EX)(Y − EY ) =
m∑
i=1

n∑
j=1

aibjX̃iỸj.

Because X̃i, Ỹj ∈ L2(P), Cauchy–Schwarz inequality (Proposition 7.3) tells
us that X̃iỸj ∈ L1(P). Hence by taking expectations on both sides of the
above equality, and applying linearity, it follows that

Cov(X, Y ) = E
(

(X − EX)(Y − EY )
)

=
m∑
i=1

n∑
j=1

aibjEX̃iỸj.

The claim follows by noting that EX̃iỸj = Cov(Xi, Yj).

Proposition 7.10. The variances of the sum Sn =
∑n

i=1Xi and the arith-
metic average X̄n = 1

n

∑n
i=1Xi of independent square-integrable random

variables X1, . . . , Xn are given by

Var(Sn) =
n∑

i=1

Var(Xi) and Var(X̄n) =
σ2

n
,

where σ2 = 1
n

∑n
i=1 Var(Xi).

� The variance of the arithmetic average of independent and identically
distributed square-integrable random variables tends to zero as n→∞.

Proof. The independence assumption combined with Proposition 7.8 tells us
that Cov(Xi, Xj) = 0 for all i ̸= j. Observe also that Var(Sn) = Cov(Sn, Sn)
by definition. The bilinearity of the covariance operation (Proposition 7.9)
then implies that

Var(Sn) = Cov
( n∑

i=1

Xi,
n∑

j=1

Xj

)
=

n∑
i=1

n∑
j=1

Cov(Xi, Xj)

=
n∑

i=1

Cov(Xi, Xi) =
n∑

i=1

Var(Xi).

Observe next that X̄n = n−1Sn. Therefore, Proposition 7.6 implies that
Var(X̄n) = n−2 Var(Sn) = n−1σ2.
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This formula is remarkable as it shows that the variance of the empirical
average 1

n

∑n
i=1Xi, that is itself a random variable, decreases to zero as

n→∞.

7.6 Markov’s and Chebyshev’s inequalities

Lemma 7.11 (Markov’s inequality). For any t > 0 and any nonnegative
random variable X, P(X ≥ t) ≤ t−1EX.

Proof. Denote A = {X ≥ t}. Because t1A ≤ X1A ≤ X pointwise, the
monotonicity of integration tells us that

P(X ≥ t) = E1A = t−1Et1A ≤ t−1EX.

Lemma 7.12 (Chebyshev’s inequality). For any ϵ > 0 and any square-
integrable random variable X, P(|X − EX| ≥ ϵ) ≤ ϵ−2 Var(X).

Proof. Note that P(|X − EX| ≥ ϵ) = P((X − EX)2 ≥ ϵ2). Then apply
Markov’s inequality (Lemma 7.11) to the nonnegative random variable (X−
EX)2.

7.7 Weak law of large numbers

We say that a sequence of random variables Xn converges in probability to
random variable X if P(|Xn −X| > ϵ)→ 0 for all ϵ > 0.

Theorem 7.13. Let X1, . . . , Xn be mutually independent square-integrable
random numbers with a common mean m and common variance σ2. Then

1

n

n∑
i=1

Xi → m in probability.

Proof. Denote Mn = 1
n

∑n
i=1Xi. Then E(Mn) = m and Var(Mn) = σ2

n
.

Chebyshev’s inequality (Lemma 7.12) tells that for any ϵ > 0,

P(|Mn −m| > ϵ) ≤ ϵ−2 Var(Mn) =
σ2

ϵ2n
→ 0

as n→∞.
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7.8 Exercises

Exercise 7.14 (Laws of independence). Which of the following statements
are true in general for real-valued random variables? Explain why a state-
ment is generally true, or give a counterexample.

(a) X ⊥⊥ Y and Y ⊥⊥ Z =⇒ X ⊥⊥ Z.

(b) X ⊥⊥ Y and X ⊥⊥ Z =⇒ X ⊥⊥ (Y, Z).

(c) X ⊥⊥ Y and X, Y ≥ 0 =⇒ E(XY ) = EX EY .

Exercise 7.15 (Eleventh hour). Let T = H+ 1
60
M+ 1

3600
S, in which H,M,S

are mutually independent random variables such that Law(H) = 1
24

∑23
h=0 δh,

Law(M) = 1
60

∑59
m=0 δm, and Law(S) = 1

60
λ(0,60), and λ(0,60) denotes the

restriction of the Lebesgue measure on the interval (0, 60).

(a) Determine ET .

(b) Determine VarT .

(c) Determine Cov(H,T ).

(d) Determine P(233599
3600

< T < 24).

Exercise 7.16 (Triangles in a random graph). Denote by Vk the family
of unordered k-element subsets of V = {1, . . . , n}. Let (IA : A ∈ V2) be
mutually independent Ber(p)-distributed random variables. These random
variables can be used to generate a random graph G = (V,E) with node set
V and link set E = {A ∈ V2 : IA = 1}, in which the number of triangles
equals

T =
∑
B∈V3

θB, where θB =
∏

A∈V2:A⊂B

IA.

(a) Explain why the random variables (θB : B ∈ V3) are not independent.

(b) Determine the law of the random variable θB and verify that EθB = p3

and Var(θB) = p3(1− p3).

(c) Prove that Cov(θB, θB′) = 0 when |B ∩B′| ≤ 1 and compute the value
of Cov(θB, θB′) when |B ∩B′| = 2.
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(d) With the help of (b)–(c), prove that ET =
(
n
3

)
p3 and Var(T ) = 12

(
n
4

)
(p5−

p6) +
(
n
3

)
(p3 − p6).

(Hint: Recall the proof of Proposition 7.10.)

Exercise 7.17 (Triangles in a sparse random graph). Let Tn be the number
of triangles in a random graph Gn with node count n and link probability
pn, in which all nodes pairs are linked with probability pn, independently
of other pairs. We saw in Exercise 7.16 that ETn =

(
n
3

)
p3n and Var(Tn) =

12
(
n
4

)
(p5n − p6n) +

(
n
3

)
(p3n − p6n). Prove that

(a) limn→∞ P(Tn = 0) = 1 when npn → 0.

(Hint: Markov’s inequality; Tn > 0 ⇐⇒ Tn ≥ 1.)

(b) limn→∞ P(Tn > 0) = 1 when npn →∞.

(Hint: Chebyshev’s inequality; Tn = 0 =⇒ |Tn − ETn| ≥ ETn.)

Exercise 7.18 (Range of expectations). Let X be a random variable such
that P(X ∈ (0, 1)) = 1.

(a) Prove that EX > 0.

(b) Prove that EX ∈ (0, 1).

Hint: Recall Theorem 5.1 and Proposition 5.3.
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96



CHAPTER 8. RANDOM SEQUENCES AND LIMITS 97

8.1 Cumulative distribution functions

The cumulative distribution function of a probability measure µ on (R,B(R))
is a function F : R→ [0, 1] defined by

F (t) = µ((−∞, t]).

The cumulative distribution function FX of a real-valued random variableX is
defined as the cumulative distribution function of the law of X, so that

FX(t) = P(X ≤ t).

Proposition 8.1. Any cumulative distribution is nondecreasing, right-
continuous, and has limits limt→−∞ F (t) = 0 and limt→∞ F (t) = 1.

Proof. (i) For any s ≤ t, we see that (−∞, s] ⊂ (−∞, t], so that by mono-
tonicity,

F (s) = µ((−∞, s]) ≤ µ((−∞, t]) = F (t).

(ii) For any t, monotone continuity combined with the observation that
(−∞, t+ 1

n
] ↓ (−∞, t] implies that

lim
n→∞

F (t+ 1/n) = lim
n→∞

µ((−∞, t+ 1/n]) = µ((−∞, t]) = F (t).

(iii) Because (−∞,−n] ↓ ∅ and (−∞, n] ↑ R as n → ∞, we find by
monotone continuity that

lim
n→−∞

F (n) = lim
n→∞

µ(−∞,−n] = µ(∅) = 0

and
lim
n→∞

F (n) = lim
n→∞

µ(−∞, n] = µ(R) = 1.

Proposition 8.2. If the cumulative distribution function of µ of is differ-
entiable everywhere with derivative F ′(t) = f(t) being a measurable func-
tion, then f is a density function of µ with respect to the Lebesgue measure,
so that

µ(B) =

∫
B

f(t) dt.

Proof. This follows by the fundamental theorem of calculus.
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8.2 Quantile functions

A quantile function of a probability measure µ on (R,B(R)) is a function
Q : (0, 1)→ R such that

µ
(

(−∞, Q(p))
)
≤ p ≤ µ

(
(−∞, Q(p)]

)
for all p ∈ (0, 1). (8.1)

A quantile function of a real-valued random variable X is a quantile function
of the law of X.

� A quantile function of X assigns to every probability value p ∈ (0, 1) a
number t = Q(p) such that

P(X < t) ≤ p and P(X > t) ≥ 1− p.

If the cumulative distribution function F of µ is a strictly increasing
function, then F : R → (0, 1) is invertible, and the inverse function F−1

is the unique quantile function of µ. (See Proposition 8.8.) In general, a
quantile function always exists, but is usually nonunique.

In what follows, f(x+) = limy↓x f(y) and f(x−) = limy↑x f(y). Then
(8.1) can be written in terms of the cumulative distribution function F as

F (Q(p)−) ≤ p ≤ F (Q(p)). (8.2)

Lemma 8.3. Any quantile function of a probability measure µ with cumu-
lative distribution function F is nondecreasing and satisfies

(i) Q(s) > x =⇒ s ≥ F (x),

(ii) Q(s) ≤ x =⇒ s ≤ F (x),

(iii) s < F (x) =⇒ Q(s) ≤ x,

(iv) s > F (x) =⇒ Q(s) > x,

(v) Q(F (x)−) ≤ x ≤ Q(F (x)+),

(vi) (F (a), F (b)) ⊂ Q−1(a, b] ⊂ [F (a), F (b)],

(vii) F−1(s, t) ⊂ [Q(s), Q(t)) ⊂ F−1[a, b].

Proof. Let us first verify that Q is increasing. Fix some numbers in (0, 1)
such that s1 ≤ s2. We will show that in this case Q(s1) > Q(s2) leads into a
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contradiction. So, assume now that Q(s1) > Q(s2) were true. Then because
F is increasing and right-continuous, it follows that F (Q(s1)−) ≥ F (Q(s2)),
and hence (8.2) implies that

s1 ≥ F (Q(s1)−) ≥ F (Q(s2)) ≥ s2.

We also have s1 ̸= s2 because Q(s1) ̸= Q(s2). Therefore we conclude that
s1 > s2 which is the desired contradiction.

To prove (i), note first that F (x) ≤ F (y−) for all x < y. Implica-
tion (i) hence follows from the first inequality in (8.2). On the other hand,
implication (ii) follows immediately from the second inequality in (8.2). Fur-
thermore, (iii) and (iv) follow by negating the implications (i) and (ii).

By taking a limit s ↑ F (x), we see with the help of (iii) that Q(F (x)−) ≤
x. Similarly by taking a limit s ↓ F (x), we see with the help of (iv) that
Q(F (x)+) ≥ x. Hence we have shown (v).

By combining (i) and (ii), we obtain the implications

a < Q(s) ≤ b =⇒ F (a) ≤ s ≤ F (b),

Q(s) ≤ x < Q(t) =⇒ s ≤ F (x) ≤ t

and by combining (iii) and (iv), the implications

F (a) < s < F (b) =⇒ a < Q(s) ≤ b,

s < F (x) < t =⇒ Q(s) ≤ x < Q(t),

from which we may confirm the validity of (vi) and (vii).

Proposition 8.4. Let Q be a quantile function of a probability measure
µ, and let U be a uniformly distributed random number in (0, 1). Then the
law of Q(U) equals µ.

� For any probability measure µ on the real line, we may sample a µ-
distributed random variable X using a quantile function by setting X =
Q(U) where U a uniformly distributed random number in (0, 1).

Proof. Note first that Q is measurable, being a nondecreasing function. De-
note Q−1(−∞, x] = {s ∈ (0, 1) : Q(s) ≤ x}. By Lemma 8.3 we see that
Q(s) ≤ x for s < F (x). Hence (0, F (x)) ⊂ Q−1(−∞, x]. Lemma 8.3 also
shows that Q(s) ≤ x implies s ≤ F (x), so we may conclude that

(0, F (x)) ⊂ Q−1(−∞, x] ⊂ (0, F (x)].
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Hence
P(U < F (x)) ≤ P(Q(U) ≤ x) ≤ P(U ≤ F (x)),

from which we may conclude that P(Q(U) ≤ x) = F (x) for all x ∈ R.
Therefore, the cumulative distribution function of Q(U) equals F .

Proposition 8.5. If Q is a quantile function of a random variable X,
then

Eϕ(X)1(a < X ≤ b) =

∫ F (b)

F (a)

ϕ(Q(u))du

for any ϕ such that the expectation on the left exists. Also,

Eϕ(X)1(X > a) =

∫ 1

F (a)

ϕ(Q(u))du,

Eϕ(X)1(X ≤ b) =

∫ F (b)

0

ϕ(Q(u))du,

whenever the expectations on the left exist.

Proof. Denote I = Eϕ(X)1(a,b](X) and assume first that ϕ ≥ 0. By Propo-
sition 8.4,

I =

∫ 1

0

ϕ(Q(u))1(a,b](Q(u)) du.

By Lemma 8.3,

1(F (a),F (b))(u) ≤ 1Q−1(a,b](u) ≤ 1[F (a),F (b)](u)

Hence∫ 1

0

ϕ(Q(u))1(F (a),F (b))(u) du ≤ I ≤
∫ 1

0

ϕ(Q(u))1[F (a),F (b)](u) du.

The first claim follows for ϕ ≥ 0 because both sides above are equal to∫ F (b)

F (a)
ϕ(Q(u))du. The same claim follows for signed ϕ by treating the pos-

itive and negative separately. The latter claims follow by taking limits
a→ −∞ and b→∞.

The left-continuous quantile function of a probability measure with cu-
mulative distribution function F is defined by

Q(s) = sup{x ∈ R : F (x) < s}. (8.3)

By noting that the set on the right side of (8.3) is nonempty and bounded
from above for every s ∈ (0, 1), it follows that the above formula defines a
function Q : (0, 1)→ R.
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Lemma 8.6. For any s ∈ (0, 1),

sup{x ∈ R : F (x) < s} = inf{x ∈ R : F (x) ≥ s}. (8.4)

Proof. Fix s ∈ (0, 1). Let A = {x : F (x) < s} and B = {x : F (x) ≥ s}. The
A and B form a partition of the real line. Also, the monotonicity of F implies
that x < y for all x ∈ A and y ∈ B. Hence we see that supA ≤ inf B. This
inequality cannot be strict because otherwise there would exists a number
z such that supA < z < inf B, and such a number could not belong to
A or B, which contradicts the fact that A and B form a partition. Hence
supA = inf B and the first claim is proved.

Proposition 8.7. The left-continuous quantile function is a quantile func-
tion.

Proof. We need to verify that the function Q defined by (8.3) satisfies (8.2).
Fix s ∈ (0, 1). Formula (8.3) implies that there exists a sequence xn ↑ Q(s)
such that xn ∈ {x : F (x) < s} for all n. In particular, F (xn) < s for all n,
and it follows that

F (Q(s)−) = lim
n→∞

F (xn) ≤ s.

Formula (8.4) implies that there exists a sequence yn ↓ Q(s) such that yn ∈
{x : F (x) ≥ s} for all n. In particular, F (yn) ≥ s for all n, and it follows
that

F (Q(s)+) = lim
n→∞

F (yn) ≥ s.

The right-continuity of F implies that F (Q(s)) = F (Q(s)+) ≥ s, and the
claim follows.

Proposition 8.8. Any probability measure with a strictly increasing cumu-
lative distribution function F : R → (0, 1) has a unique quantile function
given by Q = F−1, the inverse of F .

Proof. Assume that F is invertible with inverse function1 F−1. Then F (F−1(p)) =
p. Because F is increasing, F (x−) ≤ F (x) for all x. In particular this is true
for x = F−1(p). Hence F (F−1(p)−) ≤ p ≤ F (F−1(p)). Hence (8.2) is valid,
and F−1 is a quantile function.

Assume now that Q is a quantile function in the sense of (8.2). Fix
p ∈ (0, 1) and denote t = Q(p). . . . FINISHME

1Usually F−1(B) refers to a preimage, but now F−1(p) is the inverse function of F .
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8.3 Random sequences

An random sequence is a list (X1, X2, . . . ) in which Xi : Ω→ Si is a random
variable for each i, and each Si is a measurable space equipped with a sigma-
algebra Si.

A random sequence can also be viewed as a random variable X : Ω →
S1 × S2 × · · · where we equip the infinite product space with the product
sigma-algebra

S1 ⊗ S2 ⊗ · · · = σ
(
π−1
1 (S1) ∪ π−1

2 (S2) ∪ · · ·
)
.

Usually, all the sets S1 = S2 = · · · = S. Then we write S∞ = S1 × S2 × · · ·
Proposition 6.2 extends to infinite products, and justifies the above state-

ments.

Proposition 8.9. A function f : S0 → S1 × S2 × · · · is measurable if and
only if its coordinate functions fi = πi ◦ f are measurable.

Proof. By definition, the set family C = π−1
1 (S1)∪π−1

2 (S2)∪· · · is a generator
of S1 ⊗ S2 ⊗ · · · . Therefore, by Proposition 3.3, f is S0/(S1 ⊗ S2 ⊗ · · · )-
measurable if and only if f−1(C) ∈ S0 for all C ∈ C. Because all sets in C
are either of the form C = π−1

i (B) for some B ∈ Si and some i, we see that

f is S0/(S1 ⊗ S2 ⊗ · · · )-measurable

⇐⇒ f−1(C) ∈ S0 for all C ∈ C
⇐⇒ f−1(π−1

i (B)) ∈ S0 for all B ∈ Si and for all i ≥ 1

⇐⇒ (πi ◦ f)−1(B) ∈ S0 for all B ∈ Si and for all i ≥ 1

⇐⇒ πi ◦ f is S0/Si-measurable for all i ≥ 1.

8.4 Generating independent random sequences

A sequence of random variables X1, X2, . . . with values in a measurable space
(S,S) is stochastically independent , if

P(X1 ∈ B1, . . . , Xn ∈ Bn) = P(X1 ∈ B1) · · ·P(Xn ∈ Bn)

for all integers n ≥ 1 and all B1, . . . , Bn ∈ S.
How do we generate a sequence of independent random variablesX1, X2, . . . ,

all distributed according to a probability measure µ, on some probability
space? Is this always possible?
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Assume that we have a random variable U that is uniformly distributed in
[0, 1]. Let us compute a binary expansion for a number u = 0.b1b2 · · · in [0, 1].
To fix a unique representation, we require that 0 has binary representation
0.000 · · · and all nonzero numbers in [0, 1] have infinitely many 1’s on their
binary representations. For example, 0.5 = 0.011111 · · · .

This is a ‘decision tree’ (check boundaries, or don’t care, as they have
probability zero)

1. Set b1 = 1( 1
2
, 2
2
](u)

2. Set b2 = 1( 1
4
, 1
2
](u) + 1( 3

4
, 4
4
](u).

3. Set b3 = . . .

4. In general, set bn = cn − 2cn−1 for cn = ⌈2nu− 1⌉.

5. Then u =
∑∞

n=1 bn2−n.

Proposition 8.10. For U =
∑∞

n=1Bn2−n with Bn ∈ {0, 1}, the following
are equivalent:

(i) U is uniformly distributed in (0, 1).

(ii) B1, B2, . . . are independent and distributed according to Ber(1
2
).

� We may sample an infinite sequence of fair coin flips by a deterministic
maps determined from a single uniformly distributed random number U .

Proof. (i) =⇒ (ii). Assume that U is a uniformly distributed random
variable defined on some probability space (Ω,A,P). Let U = 0.B1B2 · · · be
its binary representation. Then each Bi : Ω → {0, 1} is a random variable.
Then P(B1 = k1) = 1

2
for all k1 ∈ {0, 1}. Also, P(B1 = k1, B2 = k2) = 1

4
for

all k1, k2 ∈ {0, 1}. This generalises to

P(B1 = k1, . . . , Bn = kn) = 2−n

for all k1, . . . , kn ∈ {0, 1}. If sum this over k1, . . . , kn−1, we see that P(Bn =
kn) = 1

2
for all kn ∈ {0, 1}. Hence Bn is Ber(1

2
)-distributed, for all n. Then

it follows that

P(B1 = k1, . . . , Bn = kn) = P(B1 = k1) · · ·P(Bn = kn).
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Because this is true for all integers n, we conclude that B1, B2, . . . are
mutually independent and Ber(1

2
)-distributed random variables defined on

(Ω,A,P).
Alternatively, B = (B1, B2, . . . ) is a random variable Ω → {0, 1}∞. Its

law is a probability measure on ({0, 1}∞, (2{0,1})⊗∞).
(ii) =⇒ (i). Assume that B1, B2, . . . are mutually independent and

Ber(1
2
)-distributed. Let U ′ be a uniformly distributed in (0, 1) and letB′

1, B
′
2, . . .

be the binary expansion of U ′. Then the sequences (B1, B2, . . . ) and (B′
1, B

′
2, . . . )

have the same law in {0, 1}∞. Explain this in detail. As a consequence,
also the random variables U =

∑∞
n=1Bn2−n and U ′ =

∑∞
n=1B

′
n2−n have the

same law. Hence the law of U is uniform in (0, 1).

� For any probability distribution µ on the real line, there exists a de-
terministic algorithm that takes one perfect sample U from the uniform
distribution as its input, and outputs an infinite sequence of independent
µ-distributed random variables X1, X2, . . .

Proposition 8.11. Given any probability measures µ1, µ2, . . . on (R,B(R)),
there exist deterministic functions fi : [0, 1] → R such that when U is
a perfect uniform sample, then the random variables X1 = f1(U), X2 =
f2(U), . . . are mutually independent and distributed according to Law(Xi) =
µi for all i.

Proof. Fix a random variable U ∈ [0, 1]. Compute random variables U1, U2, . . .
as the output of the following infinite matrix product, in which B1, B2, · · · ∈
{0, 1} are the digits in the binary expansion of U :

U1

U2

U3

U4

...


=



B1 B2 B4 B5 B9 · · ·

B3 B5 B6 . .
.

B6 B7 . .
.

B8 . .
.

. .
.





1
2

1
4

1
8

1
16

...


Proposition 8.10 implies thatB1, B2, . . . are independent and Ber(1

2
)-distributed.

The same proposition also implies that each Ui is uniformly distributed in
(0, 1). Because the rows of the above infinite random matrix are indepen-
dent, it follows that the random variables U1, U2, . . . are independent. We
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have thus generated an infinite sequence of independent random variables
U1, U2, . . . from a single seed random variable U .

Finally, define Xi = Qi(Ui) where Qi is a quantile function of µi, for
example the left-continuous quantile function defined in (8.3). Then define
fi = Qi ◦h◦gi where gi maps a number u into the i-th row of infinite matrix,
and h : {0, 1}∞ → [0, 1] maps a binary sequence (the i-th row of the matrix)
into g(b) =

∑∞
n=1 bn2−n. This gives us what we wanted.

8.5 Exercises

Exercise 8.12 (Close in expectation). Let Xn, X be a real-valued random
variables defined on a probability space (Ω,A,P) such that E|X| < ∞ and
E|Xn −X| ≤ 1

n
for all n ≥ 1. For each of the following, prove that the

statement is true, or give a counterexample confirming that the statement is
false.

(a) Xn
P−→ X.

(b) P(Xn = 0)→ P(X = 0).

(c) W1(Law(Xn),Law(X)) → 0, where the Wasserstein distance of order 1
between probability measures µ and ν on (R,B(R)) is defined by

W1(µ, ν) = inf
γ∈Γ(µ,ν)

∫
R2

|x− y| γ(dx, dy),

with Γ(µ, ν) denoting the collection of probability measures on (R2,B(R2))
having first marginal µ and second marginal ν.

Hint: Markov’s inequality P(Z ≥ ϵ) ≤ ϵ−1EZ, valid for Z ≥ 0 and ϵ >
0, may be helpful for answering one of (a)–(c).



Chapter 9

Probability metrics

A concept of distance between the laws of two random variables corresponds
to a metric on a space of probability measures. In this chapter we get intro-
duced to the total variation distance.

Key concepts: total variation distance, coupling

Learning outcomes:

• Learn to think of probability distributions as points in a geometric
space.

• Learn to apply couplings to get upper bounds on the total variation
distance.

• Recognise the connection between L1-distances of densities and the
total variation distance between probability measures.

Prerequisites: Previous chapters.

106



CHAPTER 9. PROBABILITY METRICS 107

9.1 Total variation distance

The total variation distance between probability measures µ1 and µ2 on a
measurable space (S,S) is defined by

dtv(µ1, µ2) = sup
A∈S
|µ1(A)− µ2(A)|. (9.1)

Proposition 9.1. The total variation distance dtv is a metric on the space
of probability measures on (S,S).

� Probability measures on (S,S) can viewed as points in a geometric
space with distances given by the total variation distance.

Proof. (i) Let us verify that dtv(µ1, µ2) = 0 if and only if µ1 = µ2. For the
forward implication, it suffices to observe that dtv(µ1, µ2) = 0 implies that
|µ1(A)− µ2(A)| = 0 for all A ∈ S, and therefore µ1 = µ2. The backward
implication is immediate.

(ii) The symmetry property dtv(µ1, µ2) = dtv(µ2, µ1) is obvious.
(iii) Let us verify the triangle inequality. Let µ1, µ2, µ3 be probability

measures on (S,S). The triangle inequality for the absolute value on the real
line implies that

sup
A∈S
|µ1(A)− µ3(A)| ≤ sup

A∈S

(
|µ1(A)− µ2(A)|+ |µ2(A)− µ3(A)|

)
≤ sup

A∈S
|µ1(A)− µ2(A)|+ sup

A∈S
|µ2(A)− µ3(A)|.

Therefore, dtv(µ1, µ3) ≤ dtv(µ1, µ2) + dtv(µ2, µ3).

Example 9.2. The total variation distance between Dirac measures δx and
δy on (R,B(R)) equals one if x ̸= y, and zero otherwise (Exercise 9.11).

The following result provides a helpful symmetry property for densities
of probability measures.

Lemma 9.3. For any measurable functions f1, f2 : S → R+ such that∫
S
f1 dν = 1 and

∫
S
f2 dν = 1,∫

S

(f1 − f2)+ dν =

∫
S

(f2 − f1)+ dν =
1

2

∫
S

|f1 − f2| dν (9.2)
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and ∫
S

(f1 ∧ f2) dν = 1− 1

2

∫
S

|f1 − f2| dν. (9.3)

Proof. (i) Observe that (f1−f2)+ = (f1−f2)1A and (f2−f1)+ = (f2−f1)1Ac ,
where A = {x : f1(x) > f2(x)}. By integrating these equalities, we find that∫

S

(f1 − f2)+ dν =

∫
A

(f1 − f2) dν, (9.4)∫
S

(f2 − f1)+ dν =

∫
Ac

(f2 − f1) dν. (9.5)

Because
∫
S
f1 dµ =

∫
S
f2 dµ, it follows that

0 =

∫
S

(f2 − f1) dµ =

∫
A

(f2 − f1) dµ+

∫
Ac

(f2 − f1) dµ,

from which we see that the integrals on the right sides of (9.4)–(9.5) are equal
to each other. This confirms the first equality in (9.2).

(ii) Observe that |x− y| = (x − y)+ + (y − x)+ where we recall that
t+ = max{t, 0} denotes the positive part of t. Then∫

S

|f1 − f2| dν =

∫
S

(f1 − f2)+ dν +

∫
S

(f2 − f1)+ dν. (9.6)

In part (i) we saw that both integrals on right are equal to each other. This
confirms the second equality in (9.2).

(iii) Finally, we note that∫
S

(f1 ∧ f2) dν =

∫
A

f2 dν +

∫
Ac

f1 dν

= 1−
∫
A

(f1 − f2) dν

(9.4)
= 1−

∫
S

(f1 − f2)+ dν
(9.2)
= 1− 1

2

∫
S

|f1 − f2| dν.

Proposition 9.4. Let µ1, µ2 be probability measures admitting densities
f1, f2 : S → R+ with respect to a reference measure ν on (S,S). Then

dtv(µ1, µ2) =
1

2

∫
S

|f1(x)− f2(x)| ν(dx). (9.7)

In particular, for any probability measures on a countable space S with
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probability mass functions fi(x) = µi({x}),

dtv(µ1, µ2) =
1

2

∑
x∈S

|f1(x)− f2(x)|. (9.8)

Proof. (i) By writing (f1 − f2)+ = (f1 − f2)1A for A = {x : f1(x) > f2(x)},
we see that∫
S

(f1−f2)+ dν =

∫
A

f1 dν−
∫
A

f2 dν = µ1(A)−µ2(A) ≤ |µ1(A)− µ2(A)|.

Hence
∫
S
(f1 − f2)+ dν ≤ dtv(µ1, µ2). With the help of Lemma 9.3 we may

then conclude that 1
2

∫
S
|f1 − f2| dν ≤ dtv(µ1, µ2).

(ii) Observe that (f1 − f2)1B ≤ (f1 − f2)+1B ≤ (f1 − f2)+ pointwise for
an arbitrary measurable set B.

µ1(B)−µ2(B) =

∫
B

f1 dν−
∫
B

f2 dν =

∫
S

(f1−f2)1B dν ≤
∫
S

(f1−f2)+ dν.

Similarly, we find that

µ2(B)− µ1(B) ≤
∫
S

(f2 − f1)+ dν.

In light of Lemma 9.3, the rightmost integrals appearing in the above in-
equalities are both equal to 1

2

∫
S
|f1 − f2| dν. As a consequence,

|µ1(B)− µ2(B)| ≤ 1

2

∫
S

|f1 − f2| dν.

Because this holds for all B ∈ S, we see that dtv(µ1, µ2) ≤ 1
2

∫
S
|f1 − f2| dν.

Example 9.5. Determine the total variation distance between Bernoulli dis-
tributions Ber(p) and Ber(q) with parameters p and q.

Recall that Ber(p) is a probability measure with density

fp(x) =


1− p x = 0,

p x = 1,

0 else,
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with respect to the counting measure # on (Z, 2Z). By Proposition 9.4,

dtv(Ber(p),Ber(q)) =
1

2

∫
Z
|fp(x)− fq(x)|#(dx)

=
1

2

∑
x∈Z

|fp(x)− fq(x)|

=
1

2

(
|(1− p)− (1− q)|+ |p− q|

)
= |p− q|.

9.2 Couplings

A coupling of probability measures µ1 on (S1,S1) and µ2 on (S2,S2) is a
pair (X1, X2) of random variables defined on a common probability space
(Ω,A,P) such that Law(X1) = µ1 and Law(X2) = µ2.

� The set of couplings corresponds to the set of possible dependence
structures between a pair of probability measures. The trivial coupling
corresponds to the degenerate dependence structure: independence.

Example 9.6 (Trivial coupling). Let X1 and X2 be independent random
variables distributed according to probability measures µ1 and µ2. Then
(X1, X2) constitutes a coupling, called the trivial coupling of µ1 and µ2.

Proposition 9.7. The total variation distance between probability mea-
sures µ1 and µ2 on a measurable space (S,S) is bounded by

dtv(µ1, µ2) ≤ P(X1 ̸= X2) (9.9)

for all couplings (X1, X2) of µ1 and µ2. Furthermore, there exists a cou-
pling for which the above bound holds as equality.

Proof. (i) Assume that (X1, X2) is a coupling of µ1 and µ2. Then for any
measurable set A ⊂ S,

P(X1 ∈ A)− P(X2 ∈ A) = E1A(X1)− E1A(X2)

= E
(

1A(X1)− 1A(X2)
)
.

We note that 1A(X1)− 1A(X2) = 0 whenever X1 = X2. Therefore,

|1A(X1)− 1A(X2)| ≤ 1D
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whereD = {ω ∈ Ω: X1(ω) ̸= X2(ω)}. Because Law(X1) = µ1 and Law(X2) =
µ2, it follows that

|µ1(A)− µ2(A)| =
∣∣P(X1 ∈ A)− P(X2 ∈ A)

∣∣
≤ E

∣∣1A(X1)− 1A(X2)
∣∣

≤ E1D

= P(X1 ̸= X2).

Because the above inequality holds for all A ∈ S, we conclude that

dtv(µ1, µ2) = sup
A∈S
|µ1(A)− µ2(A)| ≤ P(X1 ̸= X2).

Proving the existence of an optimal coupling is beyond the scope of
this course. This is usually done by verifying that in the weak topology
of probability measures on R2: (i) the function Law(X, Y ) 7→ P(X ̸= Y )
is a lower semicontinuous, and (ii) the collection of probability measures
{Law(X, Y ) : (X, Y ) ∈ Γ(µ, ν)} is compact. See [Vil09].

Example 9.8 (Coupling two coins). A trivial coupling of Bernoulli distribu-
tions Ber(p) and Ber(q) with parameters p < q corresponds to pair indepen-
dent random variables such that Law(X1) = Ber(p) and Law(X2) = Ber(q).
The trivial coupling combined with (9.9) provides an upper bound

dtv(Ber(p),Ber(q)) ≤ P(X1 ̸= X2)

= P(X1 = 0, X2 = 1) + P(X1 = 1, X2 = 0)

= (1− p)q + p(1− q).

For p = 0.5 and q = 0.6 this yields dtv(Ber(p),Ber(q)) ≤ 0.5.
Let us try to construct a better coupling. Define X1 = θ1 and X2 = θ1∨θ2

where θ1, θ2 are independent Bernoulli random variables with parameters
r1, r2. We want (X1, X2) to be a coupling of Ber(p) and Ber(q). For this
property to be true, it is necessary that

p = P(X1 = 1) = P(θ1 = 1),

q = P(X2 = 1) = P(θ1 = 1) + P(θ1 = 0)P(θ2 = 1).

This is equivalent to r1 = p and r1 + (1− r1)r2 = q. Then we solve r2 = q−p
1−p

.

With these choices, it follows that (X1, X2) is a coupling of Ber(p) and Ber(q).
For this coupling,

P(X1 ̸= X2) = P(θ1 = 0, θ2 = 1) = (1− r1)r2 = (1− p)q − p
1− p

= q − p.

In light of Example 9.5, we see that this is indeed an optimal coupling. For
p = 0.5 and q = 0.6 this yields dtv(Ber(p),Ber(q)) ≤ 0.1.
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9.3 Convergence in total variation

Convergence in total variation for discrete probability spaces corresponds to
pointwise convergence of probability mass functions. Somewhat surprisingly,
pointwise convergence and L1-convergence are equivalent in this setting.

Proposition 9.9. Let S be countable. Then the following are equivalent
for probability measures µn, µ on (S, 2S) with probability mass functions
fn, f :

(i) dtv(µn, µ)→ 0.

(ii) fn(x)→ f(x) for every x ∈ S.

(iii)
∑

x∈S |fn(x)− f(x)| → 0.

Proof. (i)⇐⇒ (iii) follows by Proposition 9.4.
(iii) =⇒ (ii) is obvious.
(ii) =⇒ (iii). Assume that fn(x) → f(x) for every x ∈ S. Enumerate

S = {x1, x2, . . . }. Fix ϵ > 0. Because
∑∞

k=1 f(xk) = 1, we may fix an integer
K ≥ 1 such that

∑∞
k>K f(xk) ≤ ϵ. Then∑

k>K

fn(xk) =
∑
k>K

f(xk) +
∑
k>K

(fn(xk)− f(xk))

=
∑
k>K

f(xk) +
∑
k≤K

(f(xk)− fn(xk))

≤
∑
k>K

f(xk) +
∑
k≤K

|fn(xk)− f(xk)|.

Hence∑
x∈S

|fn(x)− f(x)| =
∑
k≤K

|fn(xk)− f(xk)|+
∑
k>K

|fn(xk)− f(xk)|

≤
∑
k≤K

|fn(xk)− f(xk)|+
∑
k>K

(fn(xk) + f(xk))

≤ 2
∑
k≤K

|fn(xk)− f(xk)|+ 2
∑
k>K

f(xk)

≤ 2K max
k≤K
|fn(xk)− f(xk)|+ 2ϵ.

By taking limits as n→∞, we find that

lim sup
n→∞

∑
x∈S

|fn(x)− f(x)| ≤ 2ϵ.
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Because the above inequality is true for all ϵ > 0, we conclude that (iii) holds.

9.4 Poisson approximation

The binomial distribution Bin(n, p) represents the law of a sum

Sn = X1 + · · ·+Xn

of independent Ber(p)-distributed random variables X1, . . . , Xn. A classical
result, known as Poisson’s1 law of small numbers , tells us that the sum Sn is
approximately Poisson distributed when n is large and the mean ESn = np
is bounded.

Proposition 9.10. When pn = α/n for some constant 0 < α < ∞, then
Bin(n, pn)→ Poi(λ) in total variation as n→∞.

Proof. Fix an integer n ≥ 1. We construct a coupling of Bin(n, pn) and
Poi(λ) as follows. Let (X, X̃) be an optimal coupling of Ber(pn) and Poi(pn),
so that P(X ̸= X̃) = dtv(Ber(pn),Poi(pn)). Define

Sn = X1 + · · ·+Xn,

S̃n = X̃1 + · · ·+ X̃n,

where (X1, X̃1), . . . , (Xn, X̃n) are independent copies of (X, X̃). Then we
see that Law(Sn) = Bin(n, pn) and2 Law(S̃n) = Poi(npn). Hence (Sn, S̃n)
constitutes a coupling of Bin(n, pn) and Poi(npn). The construction of the
coupling shows that Sn ̸= S̃n is possible only when Xi ̸= X̃i for some i =
1, . . . , n. Hence the union bound implies that

P(Sn ̸= S̃n) ≤
n∑

i=1

P(Xi ̸= X̃i) = nP(X ̸= X̃).

We conclude by Proposition 9.7 that

dtv(Bin(n, pn),Poi(npn)) ≤ n dtv(Ber(pn),Poi(pn)). (9.10)

Next, with the help of Proposition 9.4 we note that (Exercise 9.13)

dtv(Ber(p),Poi(p)) = p(1− e−p) for all 0 ≤ p ≤ 1. (9.11)

1Siméon Poisson, 1781 – 1840, PhD École Polytechnique 1800 for Lagrange and Laplace.
2We know that the sum of independent Poisson random variables is Poisson.
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By plugging this into (9.10) and applying the bound 1− t ≤ e−t, we conclude
that

dtv(Bin(n, pn),Poi(npn)) ≤ np2n.

Recalling that pn = α/n, we see that

dtv(Bin(n, pn),Poi(α)) ≤ α2/n → 0 as n→∞.

9.5 Exercises

Example 9.11. Prove the statement of Example 9.2 directly from the defi-
nition.

Exercise 9.12. Compute the total variation distance for the following in-
stances of probability measures on (R,B(R)):

(a) dtv(δa, δb).

(b) dtv(Ber(p),Nor(0, 1)).

(c) dtv(Nor(a, 1),Nor(b, 1)).

Exercise 9.13. Prove equality (9.11).



Chapter 10

Conditional probability

If there be two subsequent events, the probability of the
second b

N and the probability of both together P
N , and it

being first discovered that the second event has happened,
from hence I guess that the first event has also happened,
the probability I am in the right is P

b .

—Thomas Bayes 1763

Conditional probabilities are intuitively easy but mathematically nontriv-
ial to define with respect to events of infinitesimally (read: zero) probability.
There are two approaches for doing this rigorously: (i) disintegration and
probability kernels, and (ii) conditional expectations against a sigma-algebra.
In this chapter we get introduced to these, with main focus being on the more
concrete approach using probability kernels.

Key concepts: probability kernel, conditional distribution, Bayes formula

Learning outcomes:

• Learn to disintegrate joint probabilities using probability kernels

• Learn to determine posterior distributions in Bayesian context

• Learn to work with Markov chains in continuous state spaces

Prerequisites: Previous chapters.
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10.1 Probability kernels

A kernel from a measurable space1 S1 into a measurable space S2 is a function
K : S1 × S2 → R̄+ such that for every point x ∈ S1,

B 7→ K(x,B) is a measure on S2,

and for every measurable set B ⊂ S2,

x 7→ K(x,B) is a measurable function.

A probability kernel is a kernel such that B 7→ K(x,B) is a probability
measure for every x. A kernel on a measurable space is a kernel from the
space into itself.

� A probability kernel corresponds to a collection of probability measures
Kx : B 7→ K(x,B) on S2 indexed by the points of S1 in a measurable
manner.

Example 10.1 (Poisson kernel). Define a map K : R+ × 2Z+ → [0, 1] by

K(x,B) =

{∑
k∈B e

−x xk

k!
, x > 0,

δ0(B), x = 0.

The the set function B 7→ K(x,B) can be recognised as the probability
measure on Z+ corresponding to the Poisson distribution with mean x, with
the natural extension that the Poisson distribution with mean zero equals
the Dirac measure at zero. It is possible to verify that x 7→ K(x,B) is
a continuous and thus measurable function from R+ into [0, 1] for every
B ⊂ Z+. Hence K is a probability kernel from R+ into Z+.

Example 10.2 (Deterministic map). Given an arbitrary measurable func-
tion T : S1 → S2, define

K(x,B) = δT (x)(B).

Then K(x,B) as a function of B is just the Dirac measure at y = T (x),
so we see that B 7→ K(x,B) is a probability measure. After verifying that
x 7→ K(x,B) is a measurable function (Exercise 10.12), we conclude that K
is a kernel from S1 into S2.

1‘Measurable space S’ means a pair (S,S) where S is a sigma-algebra on S.
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� Every measurable function T : S1 → S2 corresponds to a probability
kernel from S1 into S2.

Example 10.3 (Random map). Given a measurable function ϕ : S1×[0, 1]→
S2 and a uniformly in [0, 1] distributed random variable U : Ω→ [0, 1], let us
define

K(x,B) = P
(
ϕ(x, U) ∈ B

)
.

For each x, the set function B 7→ K(x,B) is just the law of the random
variable Y = ϕ(x, U), and hence a probability measure on S2. Let us now
verify that K(x,B) is measurable as a function of x. By noting that the law
of U is the Lebesgue measure on [0, 1], we see that

K(x,B) = E1B(ϕ(x, U)) =

∫
[0,1]

1B(ϕ(x, u))λ(du).

Because (x, u) 7→ 1B(ϕ(x, u)) is a measurable function from S1 × [0, 1] into
R̄+, Proposition 6.5 implies that x 7→

∫
[0,1]

1B(ϕ(x, u))λ(du) is a measurable

function from S1 into R̄+. Therefore, x 7→ K(x,B) is measurable. We
conclude that K is a probability kernel from S1 into S2.

The collection of random variables ϕ(x, U), x ∈ S1, in Example 10.3 can
be considered as mechanistic representation of a noisy function from S1 into
S2. Indeed, every probability kernel can be represented as such as random
map.

Theorem 10.4. Every probability kernel K from S into R can be repre-
sented in terms of a random map according to

K(x,B) = P
(
ϕ(x, U) ∈ B

)
(10.1)

for some measurable function ϕ : S × (0, 1) → R and some uniformly in
(0, 1) distributed random variable U .

Proof. For each x ∈ S, define a function Qx : (0, 1)→ R by

Qx(u) = sup{t ∈ R : K(x, (−∞, t]) < u}. (10.2)

Then Qx is the left-continuous quantile function of the probability measure
Kx : B 7→ K(x,B), recall (8.3). Then Law(Qx(U)) = Kx by Proposition 8.4.
That is,

P(Qx(U) ∈ B) = Kx(B) for all measurable B ⊂ R.
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Hence (10.1) is valid for the function ϕ(x, u) = Qx(u).
fixme We still need to verify that x 7→ Qx(u) is measurable. Note that

x 7→ K(x, (−∞, t]) is measurable for every t, and that the supremum in
(10.2) can be restricted to the countable set Q.

The set {(x, u) : K(x, (−∞, t]) < u} is measurable for every t. why?

10.2 Kernel products

The product of a probability measure µ on S1 and a probability kernel K
from S1 into S2 is a set function µ⊗K : S1 ⊗ S2 → [0, 1] defined by

(µ⊗K)(C) =

∫
S1

(∫
S2

1C(x, y)K(x, dy)
)
µ(dx). (10.3)

This is quite similar to the definition of product measure in (6.4).

� The product (10.3) is often abbreviated as µ(dx)K(x, dy).

Proposition 10.5. µ⊗K is a probability measure on S1 × S2.

� The probability measure µ⊗K corresponds to a pair of random variables
(X1, X2) sampled in two stages as follows:

(i) Sample X1 from probability distribution µ

(ii) Sample X2 from probability distribution K(X1, ·).

Proof. To be sure that the right side of (10.3) is well defined, we need to
verify that x 7→

∫
S2

1C(x, y)K(x, dy) is a measurable function. This needs
some work, in a similar manner as in the Fubini theorem’s proof. We omit
this (see [Çın11, Proposition 6.9]).

(i) (µ⊗K)(∅) = 0 because 1∅(x, y) = 0 identically.
(ii) Let us verify that µ⊗K is countably disjointly additive. Let C1, C2, . . . be

disjoint measurable sets in S1 × S2. Then

1∪∞
i=1Ci

=
∞∑
i=1

1Ci
= lim

n→∞

n∑
i=1

1Ci
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is a monotone increasing limits of nonnegative measurable functions 1Ci
.

Therefore, by monotone continuity and linearity of nonnegative integration,
we find that

(µ⊗K)

( ∞⋃
i=1

Ci

)
=

∫
S1

(∫
S2

1∪∞
i=1Ci

(x, y)K(x, dy)
)
µ(dx)

=

∫
S1

(∫
S2

lim
n→∞

n∑
i=1

1Ci
(x, y)K(x, dy)

)
µ(dx)

= lim
n→∞

∫
S1

(∫
S2

n∑
i=1

1Ci
(x, y)K(x, dy)

)
µ(dx)

= lim
n→∞

n∑
i=1

∫
S1

(∫
S2

1Ci
(x, y)K(x, dy)

)
µ(dx).

By noting that the double integral on the right equals (µ⊗K)(Ci), and that
limn→∞

∑n
i=1 =

∑∞
i=1 for nonnegative summands, we conclude that µ⊗C is

countably disjointly additive.
(iii) Because 1S1×S2(x, y) = 1 identically we find that

(µ⊗K)(S1 × S2) =

∫
S1

(∫
S2

K(x, dy)
)
µ(dx).

By noting that
∫
S2
K(x, dy) = K(x, S2) = 1 for all x, and that

∫
S1
µ(dx) =

µ(S1) = 1, we conclude that (µ⊗K)(S1 × S2) = 1.

The pushforward of a probability measure µ on S1 by a probability ker-
nel K from S1 into S2 is a set function µK : S2 → [0, 1] defined by

(µK)(B) =

∫
S1

K(x,B)µ(dx). (10.4)

Proposition 10.6. The pushforward µK defined by (10.4) is a probability
measure on S2.

� The pushforward operation µ 7→ µK maps probability measures into
probability measures.

Proof. The proof is similar but easier than the proof of Proposition 10.5, and
left to the reader (Exercise 10.13).
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Proposition 10.7. The marginal distributions of the probability measure
γ = µ⊗K are given γ ◦ π−1

1 = µ and γ ◦ π−1
2 = µK.

� For a random vector with distribution Law(X1, X2) = µ ⊗ K, the
coordinates are distributed according to Law(X1) = µ and Law(X2) = µK.

Proof. Let us verify that

γ(A× S2) = µ(A) and γ(S1 ×B) = (µK)(B) (10.5)

for any measurable sets A ⊂ S1 and B ⊂ S2. This will imply the claim
because preimages of coordinate projections are given by π−1

1 (A) = A × S2

and π−1
2 (B) = S1 ×B.

(i) By applying the equality 1A×S2(x, y) = 1A(x) and then the equality∫
S2
K(x, dy) = K(x, S2) = 1, we find that

(µ⊗K)(A× S2)
(10.3)
=

∫
S1

(∫
S2

1A×S2(x, y)K(x, dy)
)
µ(dx)

=

∫
S1

(∫
S2

1A(x)K(x, dy)
)
µ(dx)

=

∫
S1

1A(x)
(∫

S2

K(x, dy)
)
µ(dx)

=

∫
S1

1A(x)µ(dx)

= µ(A).

This confirms the first equality in (10.5).
The second equality in (10.5) follows by combining the equality 1S1×B(x, y) =

1B(y) and the definition of µK to conclude that

(µ⊗K)(S1 ×B)
(10.3)
=

∫
S1

(∫
S2

1S1×B(x, y)K(x, dy)
)
µ(dx)

=

∫
S1

(∫
S2

1B(y)K(x, dy)
)
µ(dx)

=

∫
S1

K(x,B)µ(dx)

(10.4)
= (µK)(B).
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10.3 Kernel densities

A measurable function k : S1 × S2 → R+ is called a density function of a
probability kernel K with respect to a measure ν on S2, if

K(x,B) =

∫
B

k(x, y) ν(dy)

for all x ∈ S1 and all measurable sets B ⊂ S2.

� In this we often write K(x, dy) = k(x, y)ν(dy).

Proposition 10.8. If a probability measure µ1 admits a density f1 with
respect to a measure ν1, and a probability kernel K admits a density k with
respect to a measure ν2, then µ1 ⊗K admits a density

f(x, y) = f1(x)k(x, y)

with respect to ν1 ⊗ ν2.

� In shorthand notation, the product of a probability measure f1(x)ν1(dx)
and a probability kernel k(x, y)ν2(dy) is given by f1(x)k(x, y)ν1(dx)ν2(dy).

Proof. ∫
A

(∫
B

f(x, y)ν2(dy)

)
ν1(dx)

=

∫
A

(∫
B

f1(x)k(x, y)ν2(dy)

)
ν1(dx)

=

∫
A

f1(x)

(∫
B

k(x, y)ν2(dy)

)
ν1(dx)

=

∫
A

f1(x)K(x,B)ν1(dx)

=

∫
A

K(x,B)µ1(dx).

Hence
∫
A×B

fd(ν1⊗ ν2) = (µ1⊗K)(A×B). Hence the probability measures
fd(ν1 ⊗ ν2) and µ1 ⊗ K agree on sets A × B. By Dynkin’s identification
theorem, they agree for all measurable sets.
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10.4 Markov chains

On a finite or countably infinite state space, a Markov chain is defined as a
random sequence such that

P(Xt = xt |Xt−1 = xt−1, . . . , X0 = x0) = P(Xt = xt |Xt−1 = xt−1)

for all x0, . . . , xt−1 such that the conditioning events occur with nonzero
probabilities. Extending this definition to general uncountable state spaces
is complicated because typically the probability of a Markov chain hitting
any particular singleton set is zero. A rigorous definition can be formulated
using probability kernels. We first need to extend the definition of the kernel
product (10.3) into higher dimensions as follows. The product of a probability
measure γ on S1 × · · · × St and a probability kernel P from St into St+1 is a
probability measure on S1 × · · · × St+1 defined by

(γ ⊗ P )(dx1, . . . , dxt+1) = γ(dx1, . . . , dxt)P (xt, dxt+1).

A Markov chain on a general measurable space S is defined as a random
sequence X0, X1, . . . such that for any integer t ≥ 1 there exists a probability
kernel Pt on S such that

Law(X0, . . . , Xt) = Law(X0, . . . , Xt−1)⊗ Pt. (10.6)

The definition implies (Exercise 10.14) that

P(Xt ∈ B |Xt−1 = x) = Pt(x,B)

for all measurable sets B and all states x such that the conditioning event
on the left occurs with a nonzero probability.

� The probability kernel Pt represents the conditional distribution of a
Markov chain at time t given its state at time t − 1, and gives a rigorous
meaning to the right side of

Pt(xt−1, B) = ‘P(Xt ∈ B |Xt−1 = xt−1)’

By iterating formula (10.6), we find that

Law(X0, . . . , Xt) = µ0 ⊗ P1 ⊗ · · · ⊗ Pt,

where µ0 = Law(X0) is the initial distribution of the Markov chain.
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� The finite-dimensional distributions Law(X0, . . . , Xt), t ≥ 0, of a
Markov chain are completely determined by the initial distribution µ0 and
transition probability kernels P1, P2, . . .

We also find (Exercise 10.15) that the pushforward by Pt satisfies

µt = µt−1Pt, (10.7)

so that the probability kernel Pt maps µt−1 = Law(Xt−1) into µt = Law(Xt).
By iterating formula (10.7), we find that

Law(Xt) = µ0P1P2 · · ·Pt.

A Markov chain is called time-homogeneous if Pt = P for all t. In this
case a random sequence satisfying (10.6) is called a Markov chain with tran-
sition probability kernel P . The joint laws of a time-homogeneous Markov
chains can be computed by

Law(X0, . . . , Xt) = µ0 ⊗ P ⊗ · · · ⊗ P︸ ︷︷ ︸
t

.

and the law of the chain at time t by

Law(Xt) = µ0P
t.

A probability measure π is an equilibrium distribution for the probability
kernel P if

πP = π.

Example 10.9 (Markov chain on a finite state space). For a Markov chain
on a finite state space S = {1, . . . , n}, with initial probability (row) vector
µ ∈ R1×n and transition probability matrix P ∈ Rn×n, the initial distribution
is the probability measure

µ0(B) =
∑
i∈B

µi, B ⊂ {1, . . . , n}

and the transition probability kernel is given by

P (i, B) =
∑
j∈B

Pi,j. B ⊂ {1, . . . , n}.

Then Law(X0, . . . , Xt) has probability mass function

(x0, . . . , xt) 7→ µ0(x0)Px0,x1 · · ·Pxt−1,xt .

10.5 Disintegration
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Theorem 10.10 (Disintegration). For any probability measure γ on S×R
with with marginals µ and ν, there exists a probability kernel K from S
into R such that γ = µ⊗K.

� For any random variables X : Ω → S and Y : Ω → R, there exists a
probability kernel K such that Law(X, Y ) = Law(X)⊗K.

A probability kernel K is called a regular conditional probability distribu-
tion of Y given X, if PX,Y = PX ⊗K.

Proposition 10.11. Assume that the law of (X, Y ) admits a density func-
tion f(x, y) with respect to ν1 ⊗ ν2. Then:

(i) Law(X) admits a density function f1(x) =
∫
f(x, y)ν2(dy).

(ii) Law(Y ) admits a density function f2(x) =
∫
f(x, y)ν1(dx).

(iii) The probability kernel K(dx, dy) = k(x, y)ν2(dy) with density func-
tion

k(x, y) =

{
f(x,y)
f1(x)

, f1(x) > 0,

f2(x), f1(x) = 0,

with respect to ν2 is a regular conditional probability distribution of
Y given X.

Proof. Todo.

10.6 Exercises

Exercise 10.12 (Deterministic map). Prove that K(x,B) = δT (x)(B) in
Exercise 10.2 is a probability kernel from S1 to S2.

Exercise 10.13 (Pushforward by a probability kernel). Prove Proposition 10.6
by adapting and simplifying the proof of Proposition 10.5.

Exercise 10.14 (Transition probability kernel). Let X0, X1, . . . be a Markov
chain with transition probability kernels P1, P2, . . . as defined in (10.6).

(a) Prove that

P(Xt−1 ∈ A, Xt ∈ B) =

∫
A

Pt(x,B)µt−1(dx),

where µt−1 = Law(Xt−1).
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(b) Prove that
P(Xt ∈ B |Xt−1 = x) = Pt(x,B)

for all x ∈ S such that P(Xt−1 = x) > 0.

Exercise 10.15 (Markov pushforward). Prove (10.7).

Exercise 10.16 (Forward and backward Bayes kernels). Consider a random
vector in (0, 1)×{0, . . . , n} distributed according to Law(Z,X) = πZ⊗KX|Z ,
in which πZ equals the uniform distribution on (0, 1) andKX|Z is a probability
kernel from (0, 1) into {0, . . . , n} defined by

KX|Z(z,B) =
∑
x∈B

f(x | z)

where f(x | z) =
(
n
x

)
(1− z)n−xzx.

(a) Determine the probability mass function of πX = πZKX|Z .
Hint: The formula B(a, b) = (a−1)!(b−1)!

(a+b−1)! for the beta function B(a, b) =
∫ 1

0
ta−1(1−

t)b−1 dt may be helpful.

(b) Determine a probability kernel KZ|X from {0, . . . , n} into (0, 1) such that

πZ ⊗KX|Z = KZ|X ⊗ πX ,

and give a natural definition to the expression on the right.

(c) Determine a function (z, x) 7→ g(z |x) such that

KZ|X(x,A) =

∫
A

g(z |x) dz.

(d) In a Bayesian model with data X, and parameter Z with prior distribu-
tion πZ , can you identify what corresponds to ‘likelihood function’ and
what to ‘posterior distribution’ in the above notation?

Exercise 10.17 (Kernel operations). A probability kernel from a measurable
space (S1,S1) into a measurable space (S2,S2) is a function K : S1×S2 → R+

such that

(i) x 7→ K(x,B) is S1/B(R+)-measurable for all B ∈ S2

(ii) B 7→ K(x,B) is a probability measure on (S2,S2) for every x ∈ S1.



CHAPTER 10. CONDITIONAL PROBABILITY 126

Given a probability measure µ on (S1,S1), define set functions µK on S2 and
µ⊗K on S1 ⊗ S2 by

(µK)(B) =

∫
S1

K(x,B)µ(dx), B ∈ S2,

(µ⊗K)(C) =

∫
S1

(∫
S2

1C(x, y)K(x, dy)
)
µ(dx), C ∈ S1 ⊗ S2.

(a) Verify that µ⊗K is a probability measure on (S1 × S2,S1 ⊗ S2).

(b) Verify that µ⊗K has marginal distributions µ and µK.

(c) Verify that µK is a probability measure on (S2,S2).

Exercise 10.18 (Deterministic map as a kernel). Let (S1,S1) and (S2,S2) be
measurable spaces and consider a measurable function T : S1 → S2. Define
K(x,B) = (1B ◦ T )(x) for x ∈ S1 and B ∈ S2.

(a) Prove that K is a probability kernel from (S1,S1) to (S2,S2).

(b) How is K related to the joint law of (X,T (X)) ∈ S1×S2 where X : Ω→
S1 is a random variable defined on some probability space (Ω,A,P)?

(c) Is it necessary in (a) to assume that T is a measurable function?

Exercise 10.19 (Gaussian kernel). Define a probability kernel on (R,B(R))
by K(x,B) =

∫
B
k(x, y) dy where

k(x, y) =
1√
2π
e−

1
2
(x−y)2 .

Let µ0 be the standard normal distribution with mean zero and variance one.

(a) Determine the probability measure µ1 = µ0K. Is µ1 a normal distribu-
tion? If yes, write down its mean and variance. If not, explain why.

(b) Determine the probability measure µn obtained recursively from µ0 by
µ1 = µ0K, µ2 = µ1K, and so on. Is µn a normal distribution? If yes,
write down its mean and variance. If not, explain why.

(c) Determine a probability kernel Kn such that µn = µ0Kn. Can you
express it as Kn(x,B) =

∫
B
kn(x, y) dy for some continuous function

kn : R2 → R?
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Exercise 10.20 (Associativity). The map µ 7→ µK in Exercise 10.17 can
be viewed as left multiplication of a probability kernel by a probability mea-
sure. We may also define right multiplication of the kernel K by a bounded
S2/B(R)-measurable function f as (Kf)(x) =

∫
S2
f(y)K(x, dy). Prove that

the left and right multiplications are associative in the sense that

(µK)f = µ(Kf).

Exercise 10.21 (Trivariate law). For µ0 and K as in Exercise 10.19, define
a probability measure on (R3,B(R3)) by

(µ0 ⊗K ⊗K)(C) =

∫
R

((∫
R

1C(x, y, z)K(y, dz)
)
K(x, dy)

)
µ0(dx).

Determine the three marginal distributions of µ0 ⊗K ⊗K.



Chapter 11

Stochastic limits

11.1 Almost sure convergence

A real-valued random sequence X1, X2, . . . defined on some probability space
(Ω,A,P) converges almost surely1 to a real-valued random variable X, de-

noted Xn
a.s.−−→ X, if

P
(

lim
n→∞

Xn = X
)

= 1.

� This is a strong form of convergence: The sequence Xn(ω) convergences
to X(ω) for all outcomes ω of the randomness-generating mechanism, ex-
cluding an event of zero probability.

Obviously, any sequence of random variables converging pointwise (for
every ω), also converges almost surely. A limit of an almost surely converg-
ing sequence is not unique. If X̃ : Ω→ R is any other random variable such
that X̃ = X almost surely, then Xn

a.s.−−→ X̃ as well (Exercise 11.5). Allowing
the convergence not to hold on an event of zero probability is needed because
many important limit theorems (in particular, the strong law of large num-
bers) of probability theory are true for almost sure convergence, but not for
pointwise convergence.

11.2 Convergence in probability

A real-valued random sequence X1, X2, . . . defined on some probability space
(Ω,A,P) converges in probability2 to a real-valued random variable X, de-

1In Finnish: ‘suppenee melkein varmasti’
2In Finnish: ‘suppenee stokastisesti’

128
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noted Xn
P−→ X, if

lim
n→∞

P
(
|Xn −X| > ϵ

)
= 0 for all ϵ > 0.

It can be proved that Xn
a.s.−−→ X implies Xn

P−→ X (see [Çın11, Theorem 3.3]).

Proposition 11.1. Xn
a.s.−−→ X =⇒ Xn

P−→ X.

Proof. Fix a number ϵ > 0 and define a random variable Yn = 1An∩Ω0 , where

An =
{
ω : |Xn(ω)−X(ω)| > ϵ

}
,

Ω0 =
{
ω : lim

n→∞
Xn(ω)→ X(ω)

}
.

Because Xn(ω) → X(ω) for every ω ∈ Ω0, we find that Yn → 0 pointwise.
Because |Yn| ≤ 1 pointwise, it follows by the bounded continuity of expecta-
tion (Theorem 4.15) that

0 = E( lim
n→∞

Yn) = lim
n→∞

EYn = lim
n→∞

P(An ∩ Ω0).

Because P(Ω0) = 1, the insensitivity of integration (Theorem 5.3) implies
that

lim
n→∞

P(|Xn −X| > ϵ) = lim
n→∞

P(An) = lim
n→∞

P(An ∩ Ω0) = 0.

Hence Xn
P−→ X.

11.3 Borel–Cantelli theorem

The Borel3 –Cantelli4 theorem is a powerful tool for analysing whether or not
certain events may occur infinitely often. An event is a measurable set A ⊂ Ω
in a probability space (Ω,A,P). Events Aj, j ∈ J , are called stochastically
independent if the corresponding indicator random variables 1Aj

, j ∈ J , are
stochastically independent.

� If P(An) → 0 sufficiently fast so that the sum
∑∞

n=1 P(An) is finite,
then with probability one, only finite many events among A1, A2, . . . may
occur.

3Same Émile Borel who invented the modern set-theoretic approach to integration and
supervised Lebesgue’s doctoral thesis.

4Francesco Paolo Cantelli, 1875–1966, PhD 1899 @ University of Palermo.
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� If P(An) does not converge to zero, or if P(An) → 0 so slowly that
the sum

∑∞
n=1 P(An) is infinite, then with probability one, infinitely many

events among independent events A1, A2, . . . will occur.

Theorem 11.2 (Borel–Cantelli). For any events A1, A2, . . . , the random
variable N =

∑∞
j=1 1Aj

satisfies

∞∑
j=1

P(Aj) <∞ =⇒ N <∞ almost surely. (11.1)

Furthermore, if the events A1, A2, . . . are stochastically independent, then

∞∑
j=1

P(Aj) =∞ =⇒ N =∞ almost surely. (11.2)

Proof. (i) Define Nk = 1A1 + · · ·+ 1Ak
. Then by the linearity of expectation,

and noting that E1Aj
= P(Aj), we see that

ENk =
k∑

j=1

P(Aj).

Because Nk ↑ N pointwise, the monotone continuity of expectation implies
that

EN = lim
k→∞

ENk = lim
k→∞

k∑
j=1

P(Aj) =
∞∑
j=1

P(Aj).

If we assume that
∑∞

j=1 P(Aj) <∞, then EN <∞, and hence (Theorem 5.2)
implies that N <∞ almost surely. This confirm the implication (11.1).

(ii) To verify (11.2), assume now that
∑∞

j=1 P(Aj) =∞. Then the above
computation shows that EN =∞, but this does not automatically imply that
N =∞ almost surely. We will impose the extra assumption that A1, A2, . . .
are independent. Then the indicator variables 1A1 , 1A2 , . . . are independent.
Because E(12

Aj
) = E(1Aj

) = P(Aj), we see that

Var(1Aj
) = E(12

Aj
)− (E1Aj

)2 ≤ P(Aj),

and it follows by independence that

Var(Nk) =
k∑

j=1

Var(1Aj
) ≤

k∑
j=1

P(Aj) = ENk.
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Chebyshev’s inequality then implies that for any real number t > 0,

P(Nk ≤ ENk − t) ≤ P(|Nk − ENk| ≥ t) ≤ Var(Nk)

t2
≤ ENk

t2
.

Because Nk ≤ N , this further implies that

P(N ≤ ENk − t) ≤
ENk

t2
for all k ≥ 1 and t > 0.

By denoting sk = ENk and substituting t = s
2/3
k , it follows that

P
(
N ≤ sk − s2/3k

)
≤ s

−1/3
k .

Differentiation shows that the function s 7→ s − s2/3 is strictly increasing
on the interval

(
(2
3
)3,∞

)
and converges to infinity as s → ∞. Because

sk ↑ ∞, we conclude that the sequence k 7→ sk − s2/3k is nondecreasing for
k ≥ k0 and converges to infinity as k → ∞, when we select a large enough
integer k0 such that sk0 > (2

3
)3. As a consequence, we see that the events

Fk =
{
N < sk − s2/3k

}
satisfy

Fk0 ⊂ Fk0+1 ⊂ Fk0+1 ⊂ · · · and
∞⋃

k=k0

Fk = {N <∞}.

The monotone continuity of measures now implies that

P(N <∞) = lim
k→∞

P(Fk) ≤ lim
k→∞

s
−1/3
k = 0.

Hence P(N <∞) = 0, confirming implication (11.2).

Example 11.3 (Records). Let X1, X2, . . . be independent real-valued ran-
dom variables distributed according to a probability measure µ. Assume that
µ is diffuse in the sense that µ({x}) = 0 for all x ∈ R. We assume that Xn

represents the n-th observation in a sequence (e.g. sports score, temperature
measurement). Let

An =
{
Xn = max(X1, . . . , Xn)

}
denote the event that the n-th observation is a record in the sequence. Then
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P(A1) = 1. An application of Fubini’s theorem implies that

P(X1 = X2) =

∫
R2

1D(x, y) (µ⊗ µ)(dx, dy)

=

∫
R

(∫
R

1{x}(y)µ(dy)

)
µ(dx)

=

∫
R
µ({x})µ(dx)

= 0.

Because the probability of a tie break equals zero, we find that

P(X2 = max(X1, X2)) = P(X2 ≥ X1)

= P(X2 > X1) + P(X2 = X1)

= P(X2 > X1).

By symmetry, we see that P(X2 > X1) = P(X1 > X2). Therefore,

P(X2 > X1) =
1

2

(
P(X2 > X1) + P(X1 > X2)

)
=

1

2

(
P(X2 > X1) + P(X1 > X2) + P(X1 = X2)︸ ︷︷ ︸

1

)
=

1

2
.

Hence P(A2) = 1
2
. Similarly, one can verify that P(An) = 1

n
for all n. We con-

clude that
∑∞

n=1 P(An) =
∑∞

n=1
1
n

= ∞. It is also possible (Exercise 11.10)
to verify that the events A1, A2, . . . are independent. For example, because
tie breaks among X1, X2, X3 have zero probability, it follows, again by sym-
metry, that

P(A3, A2) = P(A3, X2 > X1)

=
1

2

(
P(A3, X2 > X1) + P(A3, X1 > X2)

)
=

1

2

(
P(A3, X2 > X1) + P(A3, X1 > X2) + P(A3, X1 = X2)︸ ︷︷ ︸

0

)
=

1

2
P(A3)

= P(A3)P(A2).

By similar computations, one may verify that

P(A1, A2, . . . , An) = P(A1)P(A2) · · ·P(An).
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After extending this to joint events involving complements of Aj it follows
that A1, A2, . . . are independent. Hence by Borel–Cantelli (Theorem 11.2),
the record counter N =

∑∞
n=1 1An satisfies N =∞ with probability one. We

conclude that almost surely, new records will be made infinitely many times.

Example 11.4 (Consecutive records). Continuing Example 11.3, let Ãn =
An∩An−1 denote the event that a record occurs twice in a row. We saw that
the events An and An−1 are independent, and that P(An) = 1

n
. Therefore,

∞∑
n=2

P(Ãn) =
∞∑
n=2

1

n(n− 1)
≤

∞∑
n=2

1

(n− 1)2
=

∞∑
n=1

1

n2
< ∞.

The events Ã2, Ã3, . . . are not independent, but may nevertheless apply the
first implication of the Borel–Cantelli theorem (Theorem 11.2) to conclude
that the consecutive record counter Ñ =

∑∞
n=1 1Ãn

is finite almost surely.

11.4 Transforms

The moment generating function of a probability measure µ on R̄ is a function
Mµ : R→ R̄+ defined by

Mµ(t) =

∫
R̄
etxµ(dx).

The moment generating function MX of a random variable X is defined as
that of the law of X, so that

MX(t) = EetX .

The characteristic function of a probability measure µ on R is a function
ϕµ : R→ C defined by

ϕµ(t) =

∫
R

cos(tx)µ(dx) + i

∫
R

sin(tx)µ(dx).

The characteristic function ϕX of a random variable X is defined as that of
the law of X, so that

ϕX(t) = E cos(tX) + iE sin(tX).

This can be also written as ϕX(t) = EeitX when we extend the definition of
integral to complex-valued functions with integrable real and complex part
by defining

∫
f dµ =

∫
Re(f) dµ+ i

∫
Im(f) dµ.
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11.5 Exercises

Exercise 11.5 (Almost sure limits are nonunique). Assume that Xn
a.s.−−→ X

and X̃ = X almost surely. Prove that Xn
a.s.−−→ X̃.

Exercise 11.6 (Escaping mass). Let X1, X2, . . . be real-valued random vari-
ables defined some some probability space (Ω,A,P), distributed according to
Law(Xn) = µn, where

µn = (1− 1

n
)δ0 +

1

n
δn.

Are the following statements true or false? If true, describe what the limit
is. If false, explain why the sequence does not converge.

(a) Xn
a.s.−−→ X for some limiting random variable X.

(b) Xn
P−→ X for some limiting random variable X.

(c) µn → µ in the total variation metric for some probability measure µ.

(d) µn → µ in the Wasserstein-1 metric for some probability measure µ.

(e) µn → µ in the Wasserstein-2 metric for some probability measure µ.

Exercise 11.7 (Expectations vs tail integrals). Prove that for any nonneg-
ative random variable:

(a) EX =
∫∞
0

P(X > t) dt.

(b) EXα =
∫∞
0

P(X > t1/α) dt for any α > 0.

Exercise 11.8 (Noise peaks). Let ξ, ξ1, ξ2, . . . be independent and identically
distributed nonnegative random variables. Denote ξn = O(nβ) if there exists
a constant c such that ξn ≤ cnβ for all n starting from some n0 onwards.

(a) Show that for all α > 0 and c > 0, the following are equivalent:

• ξn ≤ cn1/α starting from some n onwards, almost surely.

• Eξα <∞.

Hint: Exercise 11.7 and Borel–Cantelli.

(b) Show that if Eξα <∞, then ξn = O(n1/α) almost surely.

(c) Show that if Eξα =∞, then lim supn→∞ n−1/αξn =∞ almost surely.
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(d) Based on the above, can you deduce something about the behaviour of
Mn = max(ξ1, . . . , ξn) for large n?

Exercise 11.9 (Cramér meets Bernoulli). Let Sn = X1 + · · ·+Xn be a sum
of independent Ber(p)-distributed random integers.

(a) Determine the moment generating function M1(t) = EetX1 .

(b) Determine the moment generating function Mn(t) = EetSn .

(c) Fix a ∈ (p, 1). Prove that P( 1
n
Sn ≥ a) ≤ e−antMn(t) for all t ≥ 0.

Hint: Investigate what Markov’s inequality tells about etSn .

(d) Determine a value t∗ = t that yields the sharpest bound in (c).

(e) With the help of (d), prove that

P
(

1

n
Sn ≥ a

)
≤ e−nD(a∥p),

where D(a∥p) = (1 − a) log 1−a
1−p

+ a log a
p

equals the Kullback–Leibler

divergence of Ber(p) from Ber(a).

(f) Apply (e) to compute an upper bound for the probability that the relative
share of heads among 350000 fair coin flips5 is at least 51%.

Exercise 11.10 (Records). Prove that the events A1, A2, . . . in Example 11.3
are stochastically independent.

Exercise 11.11 (Ky Fan distance). For real-valued random variables defined
on a probability space (Ω,A,P) define the Ky Fan distance [Fan43] by

dKF(X, Y ) = inf
{
ϵ > 0: P(|X − Y | ≥ ϵ) < ϵ

}
.

(a) Prove that dKF(X, Y ) = 0 if and only if X = Y almost surely.

(b) Prove the triangle inequality dKF(X,Z) ≤ dKF(X, Y ) + dKF(Y, Z).

5See https://arxiv.org/abs/2310.04153 for an experimental study.

https://arxiv.org/abs/2310.04153


Chapter 12

Central limit theorems

The central limit theorem, arguably the most famous result of probability
theory, states that under mild regularity conditions, the law of a properly
normalised sum of independent random variables is approximated by the
standard normal distribution, the probability measure

B 7→
∫
B

1√
2π
e−x2/2 dx on (R,B(R)).

There are many versions of the central limit theorem. The Lindeberg–Lévy
version establishes weak convergence, and Tanaka’s version convergence in a
stronger Wasserstein-2 metric. We will discuss these convergence concepts,
and take a glimpse of what happens for heavy-tailed random variables with
infinite second moments.

Key concepts: weak convergence, Wasserstein distance

Learning outcomes:

• Learn what convergence in distribution means, and how to analyse it
using characteristic functions.

• Get introduced to the concept of coupling and optimal transportation.

• Learn to properly normalise a sum of random variables to get a limiting
distribution.

• Learn to identify situations in which a sum of random variables can or
cannot be approximation by a normal distribution.

Prerequisites: Previous chapters.

136
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12.1 Weak law of large numbers

Theorem 12.1 (Weak law of large numbers). Let Sn = X1 + · · ·Xn be
a sum of independent and identically distributed square-integrable random
variables with a common mean m = EX1. Then

1

n
Sn

P−→ m as n→∞.

Proof. Because ESn = mn, we find that by Chebyshev’s inequality that

P(| 1
n
Sn −m| > ϵ) = P(|Sn − ESn| > ϵn) ≤ Var(Sn)

(ϵn)2
.

Fix a number ϵ > 0. Because Var(Sn) = nVar(X1) due to independence, it
follows that

P(| 1
n
Sn −m| > ϵ) ≤ Var(X1)

ϵ2n
.

We conclude that P(| 1
n
Sn −m| > ϵ)→ 0. Hence 1

n
Sn

P−→ m.

12.2 Weak convergence of probability mea-

sures

A sequence of probability measures on R converges weakly1, denoted µn
w−→ µ,

if
∫
R ϕ dµn →

∫
R ϕ dµ for all bounded continuous functions ϕ : R → R. The

theory of weak convergence of probability measures on a metric space is a
broad topic, worthy of a lecture course of its own. There are several equiva-
lent characterisations for weak convergence. Below are the most important

Theorem 12.2. The following are equivalent for any probability measures
µ1, µ2, . . . , µ on (R,B(R)) with characteristic functions ϕ1, ϕ2, . . . , ϕ:

(i) µn
w−→ µ.

(ii) ϕXn → ϕX pointwise.

(iii) µn(A) → µ(A) for all A ∈ B(R) such that µ(∂A) = 0 where ∂A is
the boundary of A.

1Finnish: ‘suppenee heikosti’



CHAPTER 12. CENTRAL LIMIT THEOREMS 138

Proof. The proof is omitted but well documented in standard textbooks (for
example [Bil99], [Dud02], [Çın11]). The equivalence of (i)–(ii) is called the
Lévy continuity theorem.

12.3 Gaussian central limit theorems

The following famous result is attributed to Lindeberg2 and Lévy3 who
proved it in a series of articles published in 1922. The result says that the law
of a properly normalised sum of n independent and identically distributed
random variables with finite second moments converges to the standard nor-
mal distribution as n→∞ in the following sense.

Theorem 12.3 (Lindeberg–Lévy central limit theorem). Let Sn = X1 +
· · ·+Xn be a sum of independent and identically distributed square-integrable
random variables. Then

Law

(
Sn − ESn√

Var(Sn)

)
w−→ Nor(0, 1) as n→∞.

� The normal distribution is universal. No matter what the shape of the
law of X is (e.g. binomial, Poisson, exponential — the normalised limiting
distribution is always the same standard normal distribution, as long as the
summands are independent and square integrable.

Proof. (i) Denote by X a generic random variable having the same distri-
bution as X1, X2, . . . Let us assume that EX = 0 and Var(X) = 1. Then
ESn = 0 and Var(Sn) = n by independence. Then we need to show that

Law(Sn/
√
n)

w−→ Law(Z),

where Z is a generic random variable having the standard normal distribu-
tion.

Observe that the characteristic function of Sn =
∑n

j=1Xj equals

ϕSn(θ) = Eeiθ
∑n

j=1 Xj = E
n∏

j=1

eiθXj
indep
=

n∏
j=1

EeiθXj = ϕX(θ)n.

2Jarl Lindeberg, 1876–1932, PhD 1901 @ U Helsinki for E Lindelöf.
3Paul Lévy, 1886–1971, PhD 1911 @ Paris for J Hadamard.
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As a consequence,

ϕSn/
√
n(θ) = EeiθSn/

√
n = ϕSn(θ/

√
n) = ϕX(θ/

√
n)n.

(ii) When X is square-integrable, it is possible (with the help of the
dominated continuity of expectation) to verify that ϕ(θ) is twice differentiable
with Taylor expansion

ϕX(θ) = ϕX(0) + ϕ′(0)θ +
1

2
ϕ′′(0) + r(θ), (12.1)

in which r(θ)/θ2 → 0 as θ → 0, and

ϕ′(θ) =
d

dθ
EeiθX = E

(
d

dθ
eiθX

)
= E

(
iXeiθX

)
,

ϕ′′(θ) =
d

dθ
E
(
iXeiθX

)
= E

(
iX

d

dθ
eiθX

)
= E

(
(iX)2eiθX

)
.

In particular, ϕ′(0) = iEX and ϕ′′(0) = −EX2. Because EX = 0 and
Var(X) = 1, we see that EX2 = 1, and the Taylor approximation (12.1)
becomes

ϕX(θ) = 1− 1

2
θ2 + r(θ).

Then

ϕX(θ/
√
n) = 1− 1

2
θ2/n+ r(θ/

√
n),

and it follows (with some work) that for any θ ∈ R,

lim
n→∞

ϕSn/
√
n(θ) = lim

n→∞

(
1− θ2/2

n
+ r(θ/

√
n)

)n

= e−θ2/2.

(iii) We note (homework) that the characteristic function of the standard
normal distribution equals

ϕZ(θ) = e−θ2/2.

By (ii), we conclude that

lim
n→∞

ϕSn/
√
n(θ) = ϕZ(θ).

Lévy’s continuity theorem (Theorem 12.2) implies that Law(Sn/
√
n)

w−→
Law(Z).
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12.4 Wasserstein distances

The Wasserstein distance of order p ∈ [1,∞) between probability measures
on R is defined by

Wp(µ, ν) = inf
(X,Y )∈Γ(µ,ν)

(
E|X − Y |p

)1/p
, (12.2)

where Γ(µ, ν) denotes the set of couplings of µ and ν, that is, the set of
random vectors (X, Y ) such that Law(X) = µ and Law(Y ) = ν. Wasserstein
distances are named after Leonid Vaserstein4, and also many other such as
Dall’Aglio, Gini, Kantorovich, Mallows, Rubinstein. Also the term earth
mover’s distance is used.

Wasserstein distances are similar in spirit to total variation distances. In
light of Proposition 9.7, we see that

dtv(µ, ν) = inf
(X,Y )∈Γ(µ,ν)

P(X ̸= Y ). (12.3)

It is possible, but nontrivial, to show that the infima in (12.2) and (12.3)
are always attained by some (usually not equal) couplings. Geometrically,
the minimum corresponds to optimal transportation, where the task is to
transport a unit of mass with supply in R distributed according to µ into new
locations with demand distributed according to ν, where transportation cost
from x to y equals |x− y|p in (12.2) and 1(x ̸= y) in5 (12.3). A probability
measure γ = Law(X, Y ) on R2 corresponds to a transportation plan in which
γ(dx, dy) is the amount of mass transported from x to y.

We denote by P(R) the collection of all probability measures on (R,B(R)),
and by

Pp(R) =
{
µ ∈ P(R) :

∫
R
xp µ(dx) <∞

}
the collection of probability measures on R with finite p-th moments.

Proposition 12.4. The Wasserstein distance of order p ∈ [1,∞) is a
metric on the space Pp(R) of probability measures on R with finite p-th
moments.

Proof. This is harder to than what one might expect. A common proof of
the triangle inequality is based on two things: (i) verify that the Wasserstein

4Leonid N Vaserstein (PhD 1969 @ Moscow State University) is a professor at Penn
State University, USA. His last name is spelled in many ways: Vasershtein, Wasserstein,
Waserstein, Vasserstein, Vaserštěın, Vassershtejn, Vasershtejn,

5We denote 1(A) = 1 when A is valid and 1(A) = 0 when not.
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minimisation problem always admits an optimal solution (optimal coupling),
and (ii) verify that two optimal couplings can be further coupled to a suitable
trivariate random vector (see [Vil09] for details). There might be simpler proof

in [Dud02].

Proposition 12.5. The Wasserstein distance of order p ∈ [1,∞) for prob-
ability measures on R can be computed as

Wp(µ1, µ2) = (E(Q1(U)−Q2(U))p)1/p , (12.4)

where Q1, Q2 are quantile functions of µ1, µ2, and U is a uniformly dis-
tributed random variable in (0, 1).

� A quantile coupling (Q1(U), Q2(U)) is an optimal coupling for Wasser-
stein distance of order p.

Proof. Major [Maj78, Theorem 8.1] proves this in a rather simple manner.
Check that the proof has no gaps. Maybe a similar proof can be done along the

lines in [Dud02].

Example 12.6 (People transportation). Fix a number x > 0 and consider
probability measures on R defined by µ = 1

2
δ−x + 1

2
δ0 and ν = 1

2
δ0 + 1

2
δx. We

may interpret this as people transportation in which

• 50% of supply is located in Vaasa (location −x) and 50% in Oulu
(location 0).

• 50% of demand is located in Oulu (location 0) and 50% in Sodankylä
(location x).

Let (X0, Y0) and (X1, Y1) be random vectors in R2 distributed according to

γ0 =
1

2
δ(0,0) +

1

2
δ(−x,x),

γ1 =
1

2
δ(−x,0) +

1

2
δ(0,x).

We see that both (X0, Y0) and (X1, Y1) are couplings of µ and ν. Their laws
correspond to transportation plans:

• In plan γ0, people from Oulu are transported to Oulu, and people from
Vaasa to Sodankylä.
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• In plan γ1, people from Vaasa are transported to Oulu, and people from
Oulu to Sodankylä.

For these couplings, we see that

P(X0 ̸= Y0) =
1

2

(
E|X0 − Y0|2

)1/2
=
√

2x

P(X1 ̸= Y1) = 1
(
E|X1 − Y1|2

)1/2
= x.

By Proposition 9.4, we see that dtv(µ, ν) = 1
2
. In light of (12.3), we see that

(X0, Y0) is an optimal coupling for the total variation distance. One may also
verify that the γ1 equals the law of the quantile coupling in (12.4). Because
γ1 = Law(X1, Y1), we conclude that (X1, Y1) is an optimal coupling for W2,
and W2(µ, ν) = x.

� The quantile coupling is always optimal for Wasserstein distances, but
not necessarily for the total variation distance.

12.5 Tanaka central limit theorem

Te following stronger version of the Gaussian central limit theorem was given
by Hiroshi Tanaka6 [Tan73] and later independently in [JS05].

Theorem 12.7 (Tanaka central limit theorem). Let Sn = X1 + · · ·Xn be
a sum of independent and identically distributed square-integrable random
variables. Then

Law

(
Sn − ESn√

Var(Sn)

)
W2−→ Nor(0, 1) as n→∞.

Proof. A student-friendly proof does not yet exist, but hopefully appears here
sooner or later. A short (3 pages) but rather demanding proof is available in
Tanaka’s original research article [Tan73, Section 2]. A longer, but equally
demanding proof is in [JS05].

12.6 Non-Gaussian central limit theorems

What if the summands in Sn = X1 + · · ·Xn have infinite second moments
(not square-integrable)? In this case we cannot normalise Sn to have a finite

6Hiroshi Tanaka, PhD 1958 @ Kyushu University for G Maruyama.
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variance, we cannot normalise Sn to obtain a Gaussian limit in distribution.
Nevertheless, under mild regularity about the tails of X1, it is possible to
prove that with a proper scaling, different from n1/2, there exists a non-
Gaussian limit distribution. Such limiting distributions are called stable dis-
tributions .

Theorem 12.8 (Stable central limit theorem). Let Sn = X1 + · · ·Xn be
a sum of independent and identically distributed and symmetric random
variables such that P(|X| > t) ∼ ct−α as t → ∞, for some α ∈ (0, 2).
Then

Law

(
Sn

n1/α

)
w−→ Gα as n→∞,

for some probability measure Gα on R.

� For heavy-tailed summands with symmetric power-law tails of tail ex-
ponent α ∈ (0, 2), Sn

n1/2 does not converge in law. The fluctuations of Sn are

of larger order n1/α ≫ n1/2 compared to the usual Gaussian fluctuations.
The properly normalised sums Sn

n1/α converge in law to a limiting distribution
Gα, a so-called α-stable distribution.

� For summands with symmetric power-law tails of tail exponent α = 3,
one might guess that the fluctuations of Sn are of order n1/3 ≪ n1/2, and
that Sn

n1/3 would converge in law to some limiting distribution. This guess is
wrong. Because the summands now have finite second moments, the proper
normalisation is Sn

n1/2 . For power laws, there is huge difference in behaviour
depending on whether or not α < 2 (non-Gaussian behaviour) or α > 2
(Gaussian domain).

Proof. Here is a proof sketch, for details see [NWZ22]. Let X be a generic
random variable representing the common law of X1, X2, . . . Because EX2 =
∞, we cannot use a second-order Taylor expansion for the characteristic
function ϕX(θ) as in the proof of the Gaussian CLT. Instead, a so-called
Tauberian theorem (relating the tails of X to the behaviour of ϕX near zero)
can be applied to conclude that for some constant b,

ϕX(θ) = 1− b|θ|α(1 + o(1)), as t→ 0.

Now recall that ϕSn(θ) = ϕX(θ)n. Then

ϕSn/n1/α(θ) = ϕSn(θ/n1/α) = ϕX(θ/n1/α)n,
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so that

ϕSn/n1/α(θ) =
(

1− b|θ|α

n
(1 + o(1))

)n
→ e−b|θ|α .

Lévy’s continuity theorem implies that Law
(

Sn

n1/α

) w−→ Gα where the limit is

a probability measure with characteristic function e−b|θ|α .



Epilogue

This short course in probability theory aimed to give a rapid introduction
to the modern theory of probability, in its rigorous measure-theoretic for-
mat. Due to time and space limitations, several important things had to
be left out. For example, conditional expectations with respect sub-sigma-
algebras, concentration inequalities of probability theory, large deviations
theory, stochastic ordering techniques, random measures and point patterns,
continuous-time stochastic processes. Nevertheless, I hope that this course
has given you a solid foundation in the foundations of probability theory
and raised your curiosity to pursue more advanced topics in probability and
statistics.

Here are some recommendations for further reading in the field of prob-
ability theory:

• E Çınlar. Probability and Stochastics [Çın11]. This is an excellent
textbook on probability theory and stochastic processes, designed for
a long (30–32 weeks) course in Princeton University. Its first three
chapters roughly correspond to the scope of this course. The later
chapters give a nice introduction to the theory of martingales, Poisson
point patterns, and Markov and Lévy processes, including Brownian
motion.

• R Dudley. Real Analysis and Probability. [Dud02] This excellent text-
book has been used in probability theory and real analysis courses at
MIT. Besides probability theory, the book contains loads of clearly
written material on real analysis and topology. This is one of the rare
probability textbooks also presenting results on Wasserstein distances.

• O Kallenberg. Foundations of Modern Probability. This famous refer-
ence book has three editions: 1997, 2002, 2021. My favourite is the
second volume [Kal02]. This book contains a dazzling amount of the-
ory packed into its 600+ pages, with elegant proofs written in a very
concise manner. Warning: The proofs are short and elegant, but may

145



CHAPTER 12. CENTRAL LIMIT THEOREMS 146

demand some independent effort from the reader to open up. If you
know what you are looking, you will probably find it here. The book
assumes a solid background in metric spaces.

• R Vershynin. High-Dimensional Probability [Ver18]. Despite its still
rather young age, this book can already be called a classic. The text-
book gives a nice introduction to the analysis of random vectors and
random matrices, with a focus on high-dimensional settings.

• RL Schilling, FT Kühn. Counterexamples in Measure and Integration
[SK21]. This curious book offers loads of fascinating counterexamples
in probability theory and measure theory, many of which are truly
counterintuitive.



Appendix A

Extended half-line

The extended half-line is a set [0,∞] = R+ ∪ {∞}, where R+ denotes the
nonnegative real numbers, and ∞ is an element not in R+. The extended
half-line has a natural algebraic, order-theoretic, and topological structure.
The open sets of the topology further generate a Borel sigma-algebra on this
space.

A.1 Algebraic structure

The sum and product on R+ are extended to [0,∞] by defining

x+∞ = ∞+ x = ∞ for x ≥ 0,

and

x · ∞ = ∞ · x =

{
0 for x = 0,

∞ for x > 0.

The set [0,∞] equipped with these operations is a semi-ring1 with additive
identity 0 and multiplicative identity 1.

� Addition and multiplication on [0,∞] satisfy the usual arithmetic rules
of addition and multiplication on R+.

A.2 Order

We define a relation ≤ on [0,∞] by saying that x ≤ y if either y = ∞, or
x, y ∈ R+ and x ≤ y in the usual ordering on the real line. We denote x < y

1https://en.wikipedia.org/wiki/Semiring
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whenever x ≤ y and x ̸= y. Then set [0,∞] then becomes totally ordered2,
and a complete lattice in the sense that inf(A), sup(A) ∈ [0,∞] for every
nonempty A ⊂ [0,∞]. We denote intervals with endpoints a, b ∈ [0,∞] by
(a, b), (a, b], [a, b), and [a, b] as usual.

A.3 Topology

A subset of [0,∞] is called open if it can be expressed as a union of open
intervals

(a, b) = {x : a < x < b} with a, b ∈ R+

and open rays

[0, a) = {x : x < a} and (a,∞] = {x : x > a} with a ∈ R+.

A subset of [0,∞] is called closed if its complement is open. The family of
open sets T ([0,∞]) is called the topology3 of [0,∞].

One may verify that F : [0,∞]→ [0, 1] defined by

F (x) =

{
1− e−x, 0 ≤ x <∞,
1, x =∞

is an increasing and continuous bijection with an increasing and continuous
inverse

F−1(x) =

{
log 1

1−x
, 0 ≤ x < 1,

∞, x = 1.

Therefore F serves as an order isomorphism and a topology isomorphism
(homeomorphism) between [0,∞] and [0, 1]. Especially, we find that [0,∞]
is a compact and connected topological space. We can express the topology
of the extended half line as T ([0,∞]) = F−1(T ([0, 1])).

� The sets [0,∞] and [0, 1] are topologically and order-theoretically equiv-
alent.

2A partial order is a relation ≤ that is reflexive (x ≤ x), antisymmetric (x ≤ y, y ≤ x
=⇒ x = y), and (transitive x ≤ y, y ≤ z =⇒ x ≤ z). A total order is a partial order
such for every x, y, either x ≤ y or y ≤ x.

3A topology is a set family that contains ∅, S and is closed under arbitrary unions and
finite intersections.
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Proposition A.1. Every open set in [0,∞] can be expressed as a countable
union of open intervals and open rays with rational endpoints.

� Open intervals and open rays with rational endpoints constitute a
countable basis for the topology of [0,∞].

Proof. Fix an arbitrary nonempty open set U ⊂ [0,∞]. By definition, U can
be expressed as a union

U =

(⋃
a∈I

(a,∞]

)
∪
(⋃

b∈J

[0, b)

)
∪
( ⋃

(a,b)∈K

(a, b)

)
for some I, J ⊂ R+ and some set K ⊂ R+ × R+ of pairs (a, b) with a < b.
Denote by Q+ the set of nonnegative rational numbers. For any a, b ∈ R+

we may fix sequences an, bn ∈ Q+ such that an ↓ a and bn ↑ b. Then

U =

(⋃
a∈I

∞⋃
n=1

(an,∞]

)
∪
(⋃

b∈J

∞⋃
n=1

[0, bn)

)
∪
( ⋃

(a,b)∈K

∞⋃
n=1

(an, bn)

)
. (A.1)

We may also write

U =

( ⋃
a∈I′

(a,∞]

)
∪
( ⋃

b∈J ′

[0, b)

)
∪
( ⋃

(a,b)∈K′

(a, b)

)
, (A.2)

where

I ′ = {an : n ≥ 1, a ∈ I},
J ′ = {bn : n ≥ 1, b ∈ J},
K ′ = {(an, bn) : n ≥ 1, (a, b) ∈ K}

represent the sets of unique values appearing as endpoints in (A.1). Because
the sets Q+ and Q+ × Q+ are countable, so are the sets I ′, J ′ ⊂ Q+ and
K ′ ⊂ Q+ × Q+. Therefore, (A.2) is a representation of U as a desired type
of countable union.

A.4 Borel sigma-algebra

The Borel sigma-algebra on [0,∞] is defined as B([0,∞]) = σ(T ([0,∞])),
the smallest sigma-algebra containing the open sets of [0,∞].
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Proposition A.2. The family of closed lower rays {[0, t] : t ∈ R+} is a
generator of the Borel sigma-algebra B([0,∞]).

Proof. It suffices to verify that C = {[0, t] : t ∈ R+} satisfies

C ⊂ σ(T ) (A.3)

and
T ⊂ σ(C), (A.4)

where T = T ([0,∞]) is the family of open sets in [0,∞].
Verifying (A.3) is easy because each closed ray [0, t], being the comple-

ment of an open ray (t,∞], belongs to T ⊂ σ(T ). To verify (A.4), we proceed
in three steps.

(i) First we observe that (a, b] ∈ σ(C) for all a, b ∈ [0,∞], because (a, b] =
[0, b] ∩ [0, a]c: when b < ∞, both [0, a] and [0, b] belong to C; when
b =∞, (a, b] = [0, a]c is the complement of a set in C.

(ii) By applying (i), we see that (a, b) ∈ σ(C) for all a, b ∈ [0,∞], because

(a, b) =

{
∪n∈N(a, b− 1

n
], b <∞,

∪n∈N(a, n], b =∞.

(iii) By applying (ii), we see that [a, b) ∈ σ(C) for all a, b ∈ [0,∞], because

[a, b) = [0, b) ∩ [0, a)c

=
(

[0, 0] ∪ (0, b)
)
∩
(

[0, 0] ∪ (0, a)
)c
.

Property (A.4) follows from the above observations, because every open set
in T can be expressed as a countable union (see Proposition A.1) of intervals
of form (a, b) and [0, a) and (a,∞] with a, b ∈ [0,∞].

The following result provides another generator for B([0,∞]) which may
be useful in some contexts.

Proposition A.3. B([0,∞]) is the smallest sigma-algebra containing the
Borel sets of R+ and the set {∞}, that is, the set family B(R+)∪{{∞}} is
a generator of B([0,∞]).
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Proof. The open sets of R+ = [0,∞) are those that can be represented as
unions of open intervals (a, b) and open rays [0, a). Hence any open set in
R+ is also open as a subset of [0,∞]. Therefore, T (R+) ⊂ T ([0,∞]). This
implies that σ(T (R+)) ⊂ σ(T ([0,∞])), or equivalently

B(R+) ⊂ B([0,∞]). (A.5)

We also note that {∞} = [0,∞)c is a closed set in [0,∞], and therefore
{∞} ∈ B([0,∞]). This means that the one-set family {{∞}} is contained in
B([0,∞]), and together with (A.5) we conclude that

B(R+) ∪ {{∞}} ⊂ B([0,∞]),

which by the definition of a generated sigma-algebra implies that

σ(B(R+) ∪ {{∞}}) ⊂ B([0,∞]). (A.6)

Observe next that all open intervals (a, b) of [0,∞] are also open sets
of R+. Therefore, all such open intervals belong to T (R+) ⊂ B(R+). The
same argument implies all open rays of form [0, a) also belong to B(R+).
Furthermore, by writing (a,∞] = (a,∞) ∪ {∞}, we find that all open rays
of form (a,∞] are contained in σ(B(R+) ∪ {{∞}}). We conclude that all
open intervals and open rays of [0,∞] are contained in σ(B(R+) ∪ {{∞}}).
Because every open set in [0,∞] be be expressed as a countable union of
open intervals and open rays (Proposition A.1), it follows that

T ([0,∞]) ⊂ σ(B(R+) ∪ {{∞}}),

which by the definition of a generated sigma-algebra implies that

B([0,∞]) ⊂ σ(B(R+) ∪ {{∞}}). (A.7)

The claim follows by combining (A.6)–(A.7).

A.5 Measurable functions

Let (S,S) be a measurable space. A function f : S → [0,∞] is called measur-
able if it is S/B([0,∞])-measurable, that is, f−1(B) ∈ S for allB ∈ B([0,∞)].

Proposition A.4. A function f : S → [0,∞] is measurable if and only if
{x : f(x) ≤ t} ∈ S for all t ∈ R+.
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Proof. By Proposition A.2, the set family {[0, t] : t ∈ R+} is a generator of
B([0,∞]). The claim follows by Proposition 3.3.

A.6 Sequences

A sequence in [0,∞] is a function from N into [0,∞], often denoted (x1, x2, . . . )
or abbreviated as (xn). We write xn → x and say that (xn) converges to x
if for every open set U containing x there exists an integer m ≥ 1 such that
xn ∈ U for all n ≥ m. In this case x is called a limit of the sequence.

Lemma A.5. If a sequence in [0,∞] has a limit, it is unique.

Proof. We will show that [0,∞] is Hausdorff space, that is, for any distinct
x, y there exist disjoint open sets U, V containing x, y. By relabelling the
points if necessary, we may assume that x < y.

(i) If x < ∞ and y < ∞ are such that x < y, then we may choose
U = [0, x+ ϵ) and V = (y − ϵ,∞] where ϵ = (y − x)/2.

(ii) If x < ∞ and y = ∞ then we may choose U = [0, x + 1) and
V = (x+ 1,∞].

Next we note that in a Hausdorff space, all sequences have can have at
most one limit. Assume that x and y are limits of (xn), and x ̸= y. Then
fix neighbourhoods U of x and V of y which are disjoint. Then there exists
m1,m2 ≥ 1 such that xn ∈ U and xn ∈ V for all n ≥ m1 ∨ m2. This is a
contradiction. Therefore, x = y.

Lemma A.6. For any sequence in [0,∞],

(i) xn → x ∈ [0,∞) iff for any ϵ > 0 there exists an integer m ≥ 1 such
that |xn − x| < ϵ for all integers n ≥ m.

(ii) xn → ∞ iff for any 0 < M < ∞ there exists an integer m ≥ 1 such
that xn > M for all integers n ≥ m.

Proof. (ia) Assume that xn → 0. Fix 0 < ϵ < ∞. Consider the neighbour-
hood U = [0, ϵ) of 0. Fix an integer m ≥ 1 such that xn ∈ U for all n ≥ m.
Then |xn − x| = xn < ϵ for all n ≥ m.

For the converse, let U be a neighbourhood of 0. Being open, U can be
written as a union of open intervals of form (a, b) and open rays of form [0, a)
and (b,∞]. Because U contains 0, we see that at least one of the open rays
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of form [0, a) is contained in the union. Let ϵ = a. Then fix m ≥ 1 such that
xn < ϵ for all n ≥ m. Then xn ∈ [0, a) ⊂ U for all n ≥ m. Hence xn → 0.

(ib) Assume that xn → x ∈ (0,∞). Fix ϵ > 0, and define ϵ′ = ϵ ∧ x.
Consider the neighbourhood U = (x−ϵ′, x+ϵ′) of x. Because xn → x, we may
fix an integer m ≥ 1 such that xn ∈ U for all n ≥ m. Then |xn − x| < ϵ′ ≤ ϵ
for all n ≥ m.

For the converse, let U be a neighbourhood of x. Then U can be written
as a union of open intervals of form (a, b) and open rays of form [0, a) and
(b,∞]. Then at least one such interval or ray must contain x:

• If (a, b) contains x, then we may choose a small ϵ > 0 such that (x −
ϵ, x+ ϵ) ⊂ (a, b). Then (x− ϵ, x+ ϵ) ⊂ U .

• If [0, a) contains x, then we may choose a small ϵ > 0 such that (x −
ϵ, x+ ϵ) ⊂ [0, a). Then (x− ϵ, x+ ϵ) ⊂ U .

• If (b,∞] contains x, then we may choose a small ϵ > 0 such that
(x− ϵ, x+ ϵ) ⊂ (b,∞]. Then (x− ϵ, x+ ϵ) ⊂ U .

In each of the cases we found a number ϵ > 0 such that (x−ϵ, x+ϵ) ⊂ U . For
this ϵ, we select m large enough and we conclude that xn ∈ (x− ϵ, x + ϵ) ⊂
U for all n ≥ m. Therefore, xn → x.

(ii) Assume that xn →∞. Fix 0 < M <∞. Let U = (M,∞]. The there
exists m ≥ 1 such that xn ∈ U for all n ≥ m.

For the converse, assume that for any 0 < M <∞ there exists an integer
m ≥ 1 such that xn > M for all n ≥ m. Fix a neighbourhood U of ∞.
Such a neighbourhood can be written as a union of open intervals of form
(a, b) and open rays of form [0, a) and (b,∞]. Because U contains ∞, we see
that U contains at least one open ray of form (b,∞]. Choose M = b. Then
we may select an integer m ≥ 1 such that xn > M for all n ≥ m. Then
xn ∈ (b,∞] ⊂ U for all n ≥ m. Hence xn →∞.

Lemma A.7. Any nondecreasing sequence in [0,∞] converges according
to xn ↑ x with x = supn xn.

Proof. Assume that x = ∞. Fix a number 0 < M < ∞. Because M is not
an upper bound of (xn), we see that xm > M for some m ≥ 1. Because
(xn) is nondecreasing, it follows that xn > M for all n ≥ m. It follows by
Lemma A.6 that xn →∞.

(ii) Assume that 0 < x <∞. Fix a number ϵ > 0, and denote ϵ′ = ϵ ∧ x.
Because x is an upper bound of the sequence, we see that xn ≤ x for all n.
Because x− ϵ′ is not an upper bound of the sequence, we see that xm > x− ϵ
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for some integer m ≥ 1. Therefore, x − ϵ′ < xn < x + ϵ for all n ≥ m. In
particular |xn − x| < ϵ for all n ≥ m. It follows by Lemma A.6 that xn → x.

(iii) The case with x = 0 is trivial because xn = 0 for all n.

Lemma A.8. For any nondecreasing sequences in [0,∞],

(i) limn→∞(xn + yn) = limn→∞ xn + limn→∞ yn.

(ii) limn→∞(cxn) = c limn→∞ xn for all c ∈ [0,∞].

Proof. (i) If (xn) and (yn) are bounded sequences, then the first claim follows
from standard results on sequences in R. Hence it suffices to consider the
case in which (xn) or (yn) is bounded. Assume that (xn) is unbounded. Then
Lemma A.7 tells us that xn ↑ ∞. By noting that zn = xn + yn ≥ xn for all n,
we find that zn ↑ ∞, and the claim follows. By symmetry, the claim follows
similarly also in a case where (yn) is unbounded.

(ii) Denote x = supn xn and note that xn ↑ x by Lemma A.7. Consider
the following cases:

• If x ∧ c = 0, then both limits in (ii) are equal to 0.

• If x ∧ c > 0 and x ∨ c =∞, then both limits in (ii) are equal to ∞.

• If x∧c > 0 and x∨c <∞, then (xn) is bounded nondecreasing sequence
in R+ and c ∈ (0,∞), so the claim follows from standard results on
sequences in R (or is easy to check directly).

A.7 Sums

The sum of a sequence (x1, x2, . . . ) in [0,∞] is defined by

∞∑
n=1

xn = lim
N→∞

N∑
n=1

xn.

The above limit is well defined (Lemma A.7) because the partial sums SN =∑N
n=1 xn form a nondecreasing sequence in [0,∞].
For nonnegative functions on countable sets we shall employ the following

abstract sum notation. An enumeration of a countably infinite set A is a



APPENDIX A. EXTENDED HALF-LINE 155

sequence of distinct elements such that A = {x1, x2, . . . }. The sum of a
function f : A→ [0,∞] over a countably infinite set A is defined by

∑
x∈A

f(x) =
∞∑
n=1

f(xn),

in which the sequence x1, x2, . . . is an arbitrary enumeration of A. The
following result confirms that the value of the sum is insensitive to the choice
of the enumeration, so that the notation on the left side above makes sense.

Lemma A.9. For any f : A→ [0,∞], any enumerations A = {x1, x2, . . . }
and A = {y1, y2, . . . },

∞∑
n=1

f(xn) =
∞∑
n=1

f(yn)

Proof. Fix an integer M ≥ 1. Because {x1, . . . , xM} ⊂ A = {y1, y2, . . . }, we
see that {x1, . . . , xM} ⊂ {y1, . . . , yN} for some N ≥M . Therefore,

M∑
n=1

f(xn) ≤
N∑

n=1

f(yn) ≤
∞∑
n=1

f(yn).

Hence
∑M

n=1 f(xn) ≤
∑∞

n=1 f(yn) for all M , and it follows that

∞∑
n=1

f(xn) = lim
M→∞

M∑
n=1

f(xn) ≤
∞∑
n=1

f(yn).

We conclude that
∑∞

n=1 f(xn) ≤
∑∞

n=1 f(yn). A symmetric argument shows
that

∑∞
n=1 f(yn) ≤

∑∞
n=1 f(xn), and hence the claim follows.

Proposition A.10. For any f, g : S → [0,∞] defined on a countable set S,∑
x∈S

(af(x) + bg(x)) = a
∑
x∈S

f(x) + b
∑
x∈S

g(x) for all a, b ∈ [0,∞].

Proof. Fix an enumeration S = {x1, x2, . . . } and denote Fn =
∑n

k=1 f(xk)
and Gn =

∑n
k=1 g(xk). These are nondecreasing sequences in [0,∞], so we
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find that ∑
x∈S

(af(x) + bg(x)) = lim
n→∞

( n∑
k=1

(af(xk) + bg(xk))

)
= lim

n→∞
(aFn + bGn)

(Lemma A.8)
= a lim

n→∞
Fn + b lim

n→∞
Gn

= a
∑
x∈S

f(x) + b
∑
x∈S

g(x).

A.8 Double sums

Lemma A.11. For any ai,j ∈ [0,∞],

∞∑
i=1

∞∑
j=1

ai,j =
∞∑
j=1

∞∑
i=1

ai,j.

Proof. Fix integers m,n ≥ 1. Note that

∞∑
i=1

∞∑
j=1

ai,j ≥
m∑
i=1

n∑
j=1

ai,j =
n∑

j=1

m∑
i=1

ai,j. (A.8)

Because limm→∞
∑m

i=1 ai,j =
∑∞

i=1 ai,j for any j, we see by taking limits
m→∞ in (A.8) that

∞∑
i=1

∞∑
j=1

ai,j ≥
n∑

j=1

∞∑
i=1

ai,j =
n∑

j=1

bj, (A.9)

where bj =
∑∞

i=1 ai,j. Because limn→∞
∑n

j=1 bj =
∑∞

j=1 bj, we see by taking
limits n→∞ in (A.9) that

∞∑
i=1

∞∑
j=1

ai,j ≥
∞∑
j=1

bj =
∞∑
j=1

∞∑
i=1

ai,j.
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We have thus shown that
∑∞

i=1

∑∞
j=1 ai,j ≥

∑∞
j=1

∑∞
i=1 ai,j. By repeat-

ing a similar reasoning with the roles of i and j interchanged, we may
verify that

∑∞
j=1

∑∞
i=1 ai,j ≥

∑∞
i=1

∑∞
j=1 ai,j. Hence the claim follows.



Appendix B

Monotone class theorem

This section contains the proof of the monotone class theorem (Theorem 2.8)
that is repeated below. Recall that a set family on S is called a Dynkin class
if it contains S and is closed under subset difference and increasing set limit.

Theorem (Monotone class theorem). If C is a set family that is closed under
pairwise intersection and generates a sigma-algebra S, then every Dynkin
class containing C also contains S.

Lemma B.1. Any intersection of Dynkin classes on S is a Dynkin class
on S.

Proof. The proof is similar to proving that the intersection of sigma-algebras
is a sigma-algebra (Proposition 2.3), and left to the reader (Exercise B.3).

Lemma B.2. Any Dynkin class on S that is closed under pairwise inter-
sections is a sigma-algebra on S.

Proof. Let D be a Dynkin class on S that is closed under pairwise intersec-
tion. We will verify that D is actually a sigma-algebra.

(i) By definition, S ∈ D. Because D is closed under subset difference, we
see that ∅ = S \ S ∈ D as well.

(ii) Assume that A ∈ D. Because S ∈ D and D is closed under subset
difference, it follows that Ac = S \ A ∈ D.

(iii) Assume that A1, A2 ∈ D. Because D is closed under pairwise in-
tersection, we see with the help of (i) that A1 ∪ A2 = (Ac

1 ∩ Ac
2)

c ∈ D.
Therefore, D is closed under pairwise union as well, and by induction, we
see that D is closed under finite union. To verify that D is closed un-
der countable union, consider a list of sets A1, A2, · · · ∈ D, and denote

158
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Bn = A1 ∪ · · ·An. Then B1 ⊂ B2 ⊂ · · · forms an increasing sequence of
sets in D with limit ∪nBn. Because D is closed under increasing set limit, it
follows that ∪nAn = ∪nBn ∈ D.

(iv) By (ii) and (iii), we see that ∩nAn = (∪nA
c
n)c ∈ D for any sequence

of sets A1, A2, · · · ∈ D.

Proof of the monotone class theorem. Let C be a set family that is closed
under pairwise intersection and generates a sigma-algebra S. Let D be the
smallest Dynkin class that contains C, which by Lemma B.1 is well defined
as the intersection of all Dynkin classes containing C (this intersection is
nonempty because 2S is such a Dynkin class). We will prove below that D
is closed under pairwise intersection:

A,B ∈ D =⇒ A ∩B ∈ D. (B.1)

Thereafter (B.1) combined with Lemma B.2 implies that D is a sigma-
algebra. We conclude that D is a sigma-algebra containing C. By the def-
inition of a generator, S is the smallest sigma-algebra containing C, and
therefore

S ⊂ D. (B.2)

Assume now that E is an arbitrary Dynkin class containing C. The definition
of D then implies that D ⊂ E . By combining this with (B.2), we conclude
that S ⊂ E , and this yields the claim of the monotone class theorem.

Let us now finish the proof by verifying (B.1). Because C is closed under
pairwise intersection and C ⊂ D, we see that

A ∈ C, B ∈ C =⇒ A ∩B ∈ D. (B.3)

We will next extend this property so that we can replace C on the left side
of (B.3) by D. This extension will be carried out in two stages.

(i) First, fix a set B ∈ C and define

AB = {A ⊂ S : A ∩B ∈ D}.

Property (B.3) now implies that C ⊂ AB. We also see that AB is a Dynkin
class because:

• A1, A2 ∈ AB with A1 ⊂ A2 implies that A1 ∩ B,A2 ∩ B ∈ D, so that
because D is a Dynkin class, the set (A2 \A1)∩B = (A2∩B)\ (A1∩B)
also belongs to D, and this means that A2 \ A1 ∈ AB.

• An ∈ AB, An ↑ A implies that An ∩ B ∈ D, An ∩ B ↑ A ∩ B, so
that because D is a Dynkin class, also A ∩ B ∈ D, which means that
A ∈ AB.
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We may hence conclude that AB is a Dynkin class that contains C. Because
D is the smallest Dynkin class with this property, we conclude that D ⊂ AB.
By recalling that B ∈ C was arbitrarily chosen, and recalling the definition
of AB, we conclude that

A ∈ C, B ∈ D =⇒ A ∩B ∈ D. (B.4)

This extends (B.3).
(ii) Next, fix a set A ∈ D and define

BA = {B ⊂ S : A ∩B ∈ D}.

Property (B.4) then implies that C ⊂ BA. We also see that BA is a Dynkin
class by repeating the argument in the first part of the proof. We may hence
conclude that BA is a Dynkin class that contains C. Because D is the smallest
Dynkin class with this property, we conclude that D ⊂ BA. By recalling that
A ∈ D was arbitrarily chosen, and recalling the definition of BA, we conclude
that

A ∈ D, B ∈ D =⇒ A ∩B ∈ D.

This is equivalent to (B.1).

Exercise B.3. Prove Lemma B.1. (Hint: See the proof of Proposition 2.3).



English–Finnish dictionary

almost everywhere melkein kaik-
kialla

almost surely melkein varmasti

Bernoulli distribution Bernoulli-
jakauma

binomial distribution binomi-
jakauma

Borel set Borel-joukko

Borel sigma-algebra Borelin
sigma-algebra

central limit theorem keskeinen
raja-arvolause

characteristic function karakter-
istinen funktio

closed set suljettu joukko

complement komplementti

concentration inequality keskit-
tymisepäyhtälö

countable numeroituva

countably disjointly additive nu-
meroituvasti erilleen additiivinen

countably infinite numeroituvasti
ääretön

counting measure laskurimitta

coupling kytkentä

converge in distribution supeta
jakaumassa

converge in probability supeta
stokastisesti

convergence in distribution ja-
kaumasuppeneminen

convergence in probability sto-
kastinen suppeneminen

cumulative distribution function
kertymäfunktio

discrete measurable space
diskreetti mitallinen avaruus

discrete sigma-algebra diskreetti
sigma-algebra

Dirac measure Dirac-mitta

disintegration disintegrointi

disjointly additive erilleen additii-
vinen

finite äärellinen

generating family viritysperhe

disjoint sets erilliset joukot

distance etäisyys

distribution jakauma

earth mover’s distance maansiir-
toetäisyys

expectation odotusarvo

extended halfline laajennettu puo-
liakseli

extended real line laajennettu
reaaliakseli

function funktio, kuvaus

generator virittäjä

indicator function indikaattori-
funktio

161
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infinite ääretön

intersection leikkaus

kernel ydin

law jakauma

law of large numbers suurten
lukujen laki

Lebesgue measure Lebesguen
mitta

list lista

map kuvaus, funktio

marginal distribution reuna-
jakauma

measure mitta

measurable mitallinen

measurable space mitallinen
avaruus

measure space mitta-avaruus

metric metriikka

moment generating function mo-
mentit generoiva funktio

negligible mitätön

normal distribution normaali-
jakauma

open set avoin joukko

optimal coupling optimikytkentä

optimal solution optimiratkaisu

optimization optimointi

partition ositus

Poisson distribution Poisson-
jakauma

preimage alkukuva

probability distribution toden-
näköisyysjakauma

probability kernel todennäköi-
syysydin

probability mass function piste-
massafunktio

probability measure todennäköi-
syysmitta

product measure tulomitta
product sigma-algebra tulosigma-

algebra
pushforward measure työntömitta
quantile kvantiili
quantile function kvantiilifunktio
random graph satunnaisverkko
random matrix satunnaismatriisi
random number satunnaisluku
random sequence satunnaisjono
random variable satunnaismuut-

tuja
random vector satunnaisvektori
range kuvajoukko
set joukko
set difference joukkoerotus
set family joukkoperhe
set function joukkofunktio
set limit rajajoukko
sequence jono
shift invariant siirtoinvariantti
sigma-algebra sigma-algebra
stochastic process stokastinen

prosessi
subset osajoukko
total variation distance kokonais-

vaihteluetäisyys
topology topologia
uncountable ylinumeroituva
uniform distribution tasajakauma
union yhdiste
Wassertein distance Wasserstein-

etäisyys
weak convergence heikko suppen-

eminen
weak topology heikko topology
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