HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Engineering Physics and Mathematics

Lasse Leskeld

IMPLEMENTING ARITHMETIC FOR
ELLIPTIC CURVE CRYPTOSYSTEMS

Master’s Thesis

Supervisor: Professor Olavi Nevanlinna
Instructor: PhD Valtteri Niemi

Helsinki, 11th January 1999

TEKNILLINEN KORKEAKOULU DIPLOMITYON TIIVISTELMA

Tekija: Lasse Leskeld
Ty6n nimi: Aritmetiikan toteuttaminen elliptisen kiyran kryptosysteemeihin

English title: Implementing Arithmetic for Elliptic Curve Cryptosystems

Paivamaara: 11. tammikuuta 1999 Sivumaéaéara: 87
Osasto: Teknillisen fysiikan ja matematiikan osasto

Professuuri: Mat-1 Matematiikka

Ty6n valvoja: Professori Olavi Nevanlinna

Ty6n ohjaaja: FT Valtteri Niemi

Ty6 kisittelee elliptisiin kdyriin pohjautuvien kryptosysteemien tehokasta toteuttamista.
Niiden systeemien suorituskykyé tarkastellaan vertailemalla d&drellisten kuntien ja elliptis-
ten kdyrien aritmetiikan eri laskentamenetelmia. Lisdksi tehdddn katsaus kehittyneimpiin
algoritmeihin elliptisen kdyran diskreetin logaritmin ongelman ratkaisemiseksi, mikd luo
matemaattista pohjaa olettamukselle, ettd elliptisiin kdyriin perustuvilla julkisen avaimen
kryptosysteemeilld voidaan saada aikaan vahva salaus suhteellisen lyhyilld avaimilla.

Elliptisten kdyrien laaja matemaattinen teoria juontaa juurensa algebrallisesta geomet-
riasta ja lukuteoriasta. Lyhyyden vuoksi muutama lause, joiden todistaminen vaatisi sy-
villisempédd tietdmysta nailtd aloilta, on esitetty suoraan ilman todistusta. Naitd lauseita
tarvitaan elliptisen kdyran ryhméarakenteen selvittamiseksi, miki puolestaan on kyseiseen
kiayradn perustuvan kryptosysteemin turvallisuuden kannalta merkittiva tekija.

Elliptisen kdyran ryhmioperaatio voidaan laskea suorittamalla muutama laskutoimitus
kunnassa, jonka péaille kyseinen kiyrd on rakennettu. Koska kryptografiassa kiytetta-
vat kunnat ovat darellisid, tdstd seuraa, ettd ddrellisen kunnan nopeat laskenta-algoritmit
ovat tarkeitd suunniteltaessa elliptisen kidyrdn aritmetiikan tehokkaita toteutuksia. Taman
vuoksi darellisia kuntia kisitelladn tyossd yksityiskohtaisesti, painottuen kuntiin, joiden
karakteristika on 2.

Mika tekee karakteristikan 2 direllisistd kunnista kiinnostavia on se tosiseikka, ettd nai-
mi voidaan tulkita vektoriavaruuksiksi yli kunnan Fy = {0, 1}. Kyseiset kunnat voidaan
néin ollen luontevasti esittdd kiintedn pituisina bittijonoina, miki puolestaan johtaa hy-
vin nopeisiin kuntaoperaatioiden toteutuksiin kidyttden logiikkapiirejd tai yleiskdyttoisia
mikroprosessoreita. Tyossa esitetddn kuvaus erdistd aritmetiikan toteutuksista suurille ka-
rakteristikan 2 kunnille.

Elliptisen kadyrdn kryptosysteemeissd kiytettavistd laskutoimituksista tarkein on kidyran
pisteen monikerran laskeminen, miki on analoginen toimenpide potenssiin korotuksen kans-
sa kertolaskunotaatiolla varustetussa ryhmaéssa. Tyossa esitetdan muutama nopea yleisen
ryhmén potenssiinkorotusalgoritmi sekd tekniikoita, jotka hyodyntavat elliptisen kdyridn
pisteiden esitystd projektiivisen tason homogeenisissa koordinaateissa. Yhdistamalla ndma
tekniikat darellisen kunnan algoritmeihin paadytdan tehokkaisiin elliptisen kdyrdn pisteen
monikerran laskentamenetelmiin. Tydssé vertaillaan ndiden menetelmien kompleksisuutta
ja tarkastellaan erditi tehtyjd ohjelmisto- ja mikropiiritoteutuksia.

Avainsanat: elliptiset kdyrat, elliptisen kiyran kryptosysteemit, darelliset kunnat,
diskreetin logaritmin ongelma, toteutukset

Ei lainata ennen: Ty6n sijaintipaikka:

ii

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF MASTER’S THESIS
Author: Lasse Leskeld

Title of thesis: Implementing Arithmetic for Elliptic Curve Cryptosystems

Finnish title: Aritmetiikan toteuttaminen elliptisen kdyran kryptosysteemeihin
Date: 11th January 1999 Pages: 87

Department: Department of Engineering Physics and Mathematics

Chair: Mat-1 Mathematics

Supervisor: Professor Olavi Nevanlinna

Instructor: PhD Valtteri Niemi

This thesis describes how elliptic curve cryptosystems can be efficiently implemented. The
performance of these systems will be studied by comparing various methods for efficient
computation in finite fields and elliptic curve groups. In addition, the latest state-of-the-
art algorithms for solving the elliptic curve discrete logarithm problem will be reviewed.
This will provide mathematical evidence for the assumption that elliptic curve public key
cryptosystems may provide strong security with relatively small key lengths.

The mathematical theory of elliptic curves is rich, having its roots in algebraic geometry
and number theory. To keep the size of the presentation within reasonable bounds, some
theorems whose proof would involve deeper knowledge of their respective areas are taken
here for granted. These theorems are needed in exploring the group structure of an elliptic
curve over a finite field, which is a key factor in determining the security of a cryptosystem
built on this curve.

The elliptic curve group operation can be performed by computing some operations in
the field on which the curve is built. Since the fields used in cryptography are finite, this
means that fast algorithms for finite field arithmetic play a crucial role in designing efficient
implementations of elliptic curve arithmetic. Because of their practical importance, finite
fields will be discussed in great detail, with emphasis on fields of characteristic 2.

Finite fields with characteristic 2 are attractive from the implementation point of view,
since these fields can be considered as vector spaces over the field Fy = {0, 1}. Thus, these
fields can be naturally regarded as bit strings of fixed length. This in turn allows very fast
implementations of field operations using logic circuits or general purpose microprocessors.
Some efficient hardware architectures and software algorithms for performing arithmetical
operations in large finite fields will be presented here.

The key operation in elliptic curve cryptosystems is the scalar multiplication of an elliptic
curve point, which is analogous to exponentiation in multiplicative groups. Some algo-
rithms for fast exponentiation in general groups will be described together with some more
specific techniques that exploit the representation of elliptic curve points using homoge-
neous coordinates in the projective plane. These techniques are combined with algorithms
for finite field arithmetic, resulting in efficient architectures for computing scalar multiples
of elliptic curve points. The complexity of these architectures will be compared and a
summary of some existing implementations in software and hardware will be presented.

Keywords: elliptic curves, elliptic curve cryptosystems, finite fields,
discrete logarithm problem, implementations

Not borrowable till: Library code:

iii

Preface

I would like to thank Olavi Nevanlinna for his supervision and encouragement with
this work. Furthermore, I wish to express my gratitude to Valtteri Niemi for his
expert guidance, and Asko Vilavaara for arranging an excellent working environment
at the Nokia Research Center, Helsinki.

I am also grateful to numerous other colleagues in the Mobile Networks laboratory,
especially Jari Juopperi for his valuable advice with many practical issues. Special
thanks go out to Kaisa Nyberg and Ville Heikkala for engaging in many helpful
discussions on various mathematical topics that came up during the work.

Helsinki, 11th January 1999

Lasse Leskeld

iv

Contents

1 Introduction 1
1.1 Motivation. e 1
1.2 Thesis Outline 2

2 Public Key Cryptography 3
2.1 Classical Cryptography 3
2.2 The Diffie-Hellman Key Exchange 4
2.3 Public Key Cryptosystems 5
2.4 Cryptographic Primitives Based on the Discrete Logarithm Problem 6

2.4.1 ElGamal Cryptosystem 6
2.4.2 The Digital Signature Algorithm 7

3 Elliptic Curves 9

3.1 Background and Definitions oL 9
3.1.1 Geometric Approach oo 9
3.1.2 The Projective Plane 10
3.1.3 The Weierstrass Equation 11

3.2 Basic Properties 13
321 TheGroupLaw 13
3.2.2 The Discriminant and the j-Invariant 15
3.2.3 Curvesover K, char(K) #2,3 15

3.3 Elliptic Curves over Finite Fields 16
3.3.1 Numberof Points 16
3.3.2 Group Structure oL 17

CONTENTS vi
3.4 Binary Elliptic Curves o 19
3.4.1 Adding Points on Non-Supersingular Binary Curves 19
3.4.2 Addition Formulae for Supersingular Curves 20
3.4.3 Isomorphism Classes of Binary Curves 21

4 The Discrete Logarithm Problem 24
4.1 Complexity of Discrete Exponentiation 24
4.2 General Methods for Finding Discrete Logarithms 25
4.2.1 Square-Root Methods 26
4.2.2 The Index Calculus Method 26

4.3 The Elliptic Curve Discrete Logarithm Problem 27
4.3.1 MOV Reduction 27
4.3.2 Index/Xedni Calculus on Elliptic Curves 28

4.4 Security of Cryptosystems Based on the ECDLP 31
4.4.1 Cryptographically Secure Elliptic Curves 31
4.4.2 Choosing the Key Length 31
Algorithms for Finite Field Arithmetic 33
5.1 Representation of Finite Fields 33
5.1.1 Basic Operations 0o 33
5.1.2 Bases of Finite Fields 34
5.1.3 Duality in Finite Fields 35
5.1.4 Logarithm Tables 37

5.2 Multiplication L Lo 38
5.2.1 Polynomial Basis Algorithms 38
5.2.2 Multiplication with Respect to a Normal Basis over Fy 42

5.3 Inversion L e e e e e e e 43
5.3.1 Algorithms Using Exponentiation 43
5.3.2 Euclidean Inversion 45

5.4 Methods Exploiting Subfield Structure 46
5.4.1 Hybrid Multiplication, 46

CONTENTS vii
5.4.2 Inversion Using Subfields 46

5.5 Some Hardware Implementations for Fields of Characteristic2. . . . 48
5.5.1 The Mastrovito Bit-Parallel Multiplier 48

5.5.2 Two Normal Basis Bit-Serial Multipliers 50

5.5.3 A Hybrid Multiplier 52

6 Implementing Elliptic Curve Cryptosystems 55
6.1 General Aspects. L L 55
6.2 Group Generation 56
6.3 Group Operation o 58
6.3.1 Adding and Doubling Points 58

6.3.2 Scalar Multiplication 00000 59

6.4 Existing Implementations 61
6.4.1 Implementations in Software 61

6.4.2 Two Hardware Architectures 62

7 Discussion 64
7.1 Conclusions L e 64
7.2 Further Research 65

A Field Theoretic Background 67
A.1 Basic Definitionso o o 67
A.2 Field Extensions e 70
A3 Splitting Fields L 73
A4 Finite Fields 74
A.4.1 Subfield Structure L oo 74

A.4.2 Primitive Elements o000 78

A.4.3 The Trace Function 79

B Table of Notation 81
Bibliography 83

Chapter 1

Introduction

1.1 Motivation

An elliptic curve is a mathematical object built on a field. What makes these curves
interesting is that they share a special algebraic property — a group structure. In
1985, Koblitz [Kob87b] and Miller [Mil86a] independently came up with the idea
of considering elliptic curves over finite fields to construct public key cryptosystems
suitable for digital signatures and key agreement protocols.

Cryptosystems based on the use of elliptic curve groups have two advantages over
the more traditional public key schemes:

e The great diversity of elliptic curves over finite fields provides a large supply of
naturally occurring finite groups. This enhances security by making it easy for
the users of the cryptosystem to frequently change their encryption parameters.

e The absence of subexponential-time algorithms for inverting the encryption
function implies potentially equivalent security as other public key systems,
but with much shorter keys. Using shorter keys means smaller bandwidth
and memory requirements, which in turn makes it possible to integrate strong
encryption into platforms with very limited computational resources, such as
smart cards.

The drawback with the use of elliptic curves is the fact that one group operation on
a curve corresponds to several operations in the underlying finite field. Furthermore,
since the fields used in cryptography are very large, it is crucial to find methods for
efficient computation in finite fields and elliptic curve groups. This is the goal of the
thesis.

The representation of this work has been tried to keep self-contained in the sense
that the potential reader is assumed only minimal mathematical background. That
is, only some basic facts about number theory, linear algebra and group theory
are necessary. Appendix A will serve as a quick tutorial on the necessary facts
about finite fields required for understanding the text. Hopefully this approach will
make the mathematics of elliptic curves over finite fields more accessible to a wider
audience.

1.2. Thesis Outline 2

1.2 Thesis Outline

Chapter 2 introduces the basic terms and definitions used in classical and public
key cryptography. The aim is to provide a general description of cryptographic
primitives based on the discrete logarithm problem in a finite cyclic group and to
keep the presentation clear using as little mathematical details as possible.

Chapter 3 is an introduction to elliptic curves, with emphasis on curves over finite
fields. A set of theorems from algebraic geometry is taken here for granted in order to
construct a practical interface between the two worlds of mathematical abstractions
and cryptographic applications. For the sake of brevity, only those facts about elliptic
curves which are needed to understand the security and implementation aspects are
presented here.

Security issues of elliptic curve cryptosystems are discussed in Chapter 4. This
is accomplished by reviewing the best currently known algorithms for solving the
discrete logarithm problem in a general finite cyclic group. Then follows a brief
description of latest attempts to tackle this problem in elliptic curve groups. The
chapter closes with a discussion on the size of keys needed to provide the desired
level of security using elliptic curve public key cryptosystems.

Chapter 5 describes how finite field arithmetic can be efficiently performed. First,
different alternatives for representing the field elements are given. Then various
algorithms for multiplying and inverting elements in finite fields are discussed. Some
hardware architectures are also included.

In Chapter 6, all issues concerning the implementation of arithmetical operations
used in elliptic curve cryptosystems are summarized. The first part deals with general
aspects of cryptosystems, which is followed by a discussion on practical methods to
generate suitable elliptic curves, and how to compute their cardinality. Then some
efficient methods for exponentiation in a finite cyclic group are presented. These
methods are further combined with algorithms from Chapter 5 to implement the
scalar multiplication of elliptic curve points. The end of the chapter summarizes
some existing software and hardware implementations reported in the literature.

Final comparison of various solutions for implementing the whole is given in Chap-
ter 7. Some recommendations for further research are also included there.

Chapter 2

Public Key Cryptography

2.1 Classical Cryptography

The classical purpose of cryptography is to let two people, Alice and Bob, commu-
nicate securely over an insecure transmission channel. One way to accomplish this
is to first use a secure channel, e.g. a courier or a face-to-face contact, to agree upon
a common secret piece of information called the secret key and then use this knowl-
edge to transmit data in an encrypted form over a channel that can be listened. The
message to be scrambled is called plaintert and the result of encrypting is called
ciphertert. Mathematically, the idea of the ciphering procedure can be formulated
as follows.

Definition 2.1. Let P, C and K denote the finite sets of all possible plaintexts,
ciphertexts and keys, respectively. A cryptosystem is a quintuple (P,C, K, €, D) with
the property: For each k € K, there exists an encryption rule Fy, € €, E, : P — C,
and a corresponding decryption rule Dy € D, Dy : C — P that satisfy

Di(Ex(P)) =P for every P € P. (2.1)

The claimed property (2.1) guarantees that the original plaintext can always be
recovered once the decryption rule is known.

Alice and Bob can now use a cryptosystem to communicate securely as follows. First,
Alice and Bob secretly agree upon a common key k& € K. When Alice wants to send
Bob a message P € P she simply computes C' = Fj(P) and sends this to Bob.
Now Bob can recover the original message by applying the decryption rule Dy to C.
Figure 2.1 illustrates this.

To be of any use in practice, a cryptosystem should clearly have some additional
properties. First, it should be computationally feasible to apply the algorithms
for encryption and decryption. To provide security, it should be difficult for an
eavesdropper who gains knowledge of C' to obtain the plaintext P or the key k.
The latter property should hold even in the case the eavesdropper knows everything
about the cryptosystem, except the particular key being used. This requirement is
known as the Kerkhoff’s principle.

This classical scheme of choosing a common secret key between two users and using

2.2. The Diffie-Hellman Key Exchange 4

k k
—= Ek D A —=
encryption decryption

insecure channel

Figure 2.1: Symmetric ciphering procedure.

this to compute Fj and Dy, is nowadays called symmetric or private key cryptography.
Although it seems to fulfill the basic need for privacy, certain problems have arisen
that limit its usefulness.

o Key distribution. Formerly, the main users of cryptography were military and
diplomatic organizations. For them it was no problem to use couriers to ex-
change keys. Today, many people may want to communicate securely without
even knowing each other, for example via the Internet. It is clearly infeasible
to use couriers in this situation.

e Key management. In a network of n users, where each one wants to commu-
nicate securely with everyone, n(n — 1)/2 keys are required. While the use
of networks for commercial purposes is rapidly growing, this brings on serious
problems with storing all the keys confidentially.

In addition, the use of digital signatures is not possible using private key cryptogra-
phy.

2.2 The Diffie-Hellman Key Exchange

The first two to offer a solution to the key distribution problem of symmetric cryp-
tography were Diffie and Hellman [DH76] in 1976. They proposed a protocol for
agreeing upon a secret key without using any secure communications channels. This
is how it works in its simplest form:

1. Alice and Bob publicly select a multiplicative cyclic group G and an element
ged.

2. Alice produces a random integer ¢ and sends ¢® to Bob.

3. Bob generates a random integer b and sends ¢® to Alice.

4. After receiving g°, Alice computes (¢°).

5. Similarly, Bob computes (¢%)°.

Now, Alice and Bob share a common group element ¢%® which will play the role of
the secret key between them. Can an outsider figure out the key by listening the

2.3. Public Key Cryptosystems 5

channel, i.e., is it possible for someone to determine ¢?® from the knowledge of ¢,
g% and ¢? This is referred as the Diffie—-Hellman problem.

The Diffie-Hellman problem is closely related to an another problem, called the
discrete logarithm problem. That is, find an integer z that satisfies ¢ = y, where ¢
and y are known elements of a finite (multiplicatively written) group. It is easy to see
that if one possesses an algorithm to solve the discrete logarithm problem, he/she can
also solve the Diffie-Hellman problem. A lot of effort has been devoted to proving
the converse, which would imply that the both problems are equally difficult to solve.
For cyclic groups of certain orders this has been done, but in general this issue still
involves some open questions. For a discussion on the topic, see [MW98].

To securely exchange keys applying the Diffie-Hellman protocol it is essential to find
finite groups where the discrete logarithm problem is difficult to solve. It is worth
noting that since the group is finite, solving is always possible using exhaustive trial-
and-error method. The point is to construct large groups where solving the discrete
logarithm problem using the best available computing power takes very long time.
At the same time, to perform the Diffie-Hellman protocol, exponentiation should be
feasible to compute. This idea of relative computability led to the invention of public
key cryptography.

2.3 Public Key Cryptosystems

A function f: P — C is called a one-way, if evaluating values of f can be done effi-
ciently, but inverting f is “hard”, i.e., no feasible algorithm for computing preimages
F~1({C}),C € C is known. A more accurate meaning to this intuitive definition will
be developed in Chapter 4. To discuss public key cryptography, still two more terms
should be introduced. A trapdoor for a function f is a piece of information that
enables one to compute inverses of f efficiently. A trapdoor one-way function is a
mapping f : P — C having a trapdoor (that is not easy find out) such that without
knowing the trapdoor f looks like a one-way function.

Let £ be a family of bijective trapdoor one-way functions,
E={fk:P=>C|KeK}
and denote by D the set
{/x':C—P|KeKk},

respectively. Now it is clear that the quintuple (P,C,K, &, D) constitutes a cryp-
tosystem. Also, for each K € I, the encrypting rule is the function fx : P — K.
In addition, to be able to decrypt in practice, a trapdoor #(K') corresponding to the
key K used is required. The key K is called the public key and the corresponding
trapdoor ¢(K') is called the private key.

In a public key cryptosystem, every user U is assigned a public key Ky and a private
key ¢(K77). The private key is kept secret while the public key is generally available
for any other user. Bob can privately send a message P € P to Alice by obtaining
her public key K 4 from a public directory and then encrypting his message using this

2.4. Cryptographic Primitives Based on the Discrete Logarithm Problem 6

key. Since Alice is the only person who knows the secret trapdoor, no one except her
can decrypt the ciphertext. This is the fundamental idea of public key cryptography.

Public key cryptosystems have many other applications. To mention one, digital
signatures can be created by reversing the ciphering procedure described above.
That is, if Alice wants to convince someone that she is the author of the message
P, she may apply her decrypting rule to P using her private key (we assume here
that P = C). Her signature will then be S4(P) = fI:i(P) Now anyone, after
receiving the message and the signature, can verify the signature by checking if
fr,(Sa(P)) = P, using Alice’s public key. Again, Alice is the only person with the
necessary knowledge of producing messages that map correctly under encrypting with
frc,. Efficient digital signature protocols include some additional techniques, such
as application of hash functions; a class of cryptographic functions used to compress
the message being signed. Other applications include for example zero-knowledge
proofs, secure elections and digital cash; see [Sch96, Sti95].

2.4 Cryptographic Primitives Based on the Discrete Log-
arithm Problem

2.4.1 ElGamal Cryptosystem

Let us assume we have a (multiplicative) group G of order n generated by ¢, where
taking discrete logarithms with respect to ¢ is difficult. In other words, we assume
the mapping

Z3k—g* e

to be one-way. We will discuss the validity of this assumption in Chapter 4. In the
following we will show how this particular one-way function can be used to construct
cryptographic primitives.

The Diffie-Hellman key exchange introduced in Section 2.2 is an example of a pro-
tocol that exploits this one-way property. From practical point of view, it has the
drawback that one can not freely choose the particular secret key to be agreed for
symmetric ciphering.

One way to address this issue was invented by ElGamal [EIG85]. Assume k4, kp € Z
are Alice’s and Bob’s private keys and V, = ¢*4, Vg = ¢*B are their corresponding
public keys. Now, if Alice wants to transmit Bob a secret message M € G, she may
encrypt her message by evaluating the function

f:GM— (Va,MVEY) e G x G

and sending f(M) to Bob. Here kg will be the trapdoor, since knowing kp and
f(M), one can compute

Vim = ghake = Vg,
Hence, denoting f(M) = (fi, f2), M is recovered by computing

M= f(f7)7"

2.4. Cryptographic Primitives Based on the Discrete Logarithm Problem 7

Here we have assumed that inverses in the group GG can be efficiently computed. In
later chapters we’ll see that this is a feasible assumption.

What about the one-wayness of f? Suppose an eavesdropper gets to know f(M) =
(Va, MV;A). Can he figure out M? Since we assume group inversion to be easy,
knowledge of M is equivalent to knowing Vg*“. But this is equivalent to solving the
Diffie-Hellman problem discussed in Section 2.2, because Vg“‘ = gkaks,

The ElGamal cryptosystem presented above has one undesirable property. There
is one person who can invert f without kg, namely Alice. This doesn’t sound like
too serious a problem, since Alice originally knew M. However, it means that this
system is not suitable for digital signatures. Another thing to note is that Alice’s
private/public key pair is used only to mask Bob’s public key, an as such is in no
way related to Alice’s identity. Thus Alice’s key pair could be as well replaced by a
random one-time key pair. In fact, this should always be done, since otherwise there
is an efficient attack against this cryptosystem [Sch96].

2.4.2 The Digital Signature Algorithm

Below we will describe a digital signature scheme that can be applied in an arbi-
trary cyclic group GG of prime order. This scheme is based on the Digital Signature
Standard (DSS) proposed by U.S. National Institute of Technology (NIST) [fST91].
As before, we assume (is generated by ¢g. Assume further that the order of GG is a
prime r. Also, let ¢ be a bijection from G to the set Z, = {0,1,...,r — 1} that can
be easily computed, and denote the image () of € G by 7.

Suppose m is a positive integer representing the message Alice wants to sign. This

is how the signing goes:

1. Generate a one-time key pair (u, V), where 1 < u < r is a random integer and

V = g".
2. Solve 0 < v <r —1 from
m = —ksV +uv (mod r), (2.2)
where k4 is Alice’s private key. If v = 0, go back to Step 1.
3. Output the pair (V,v) as Alice’s signature for m.

To verify the signature with Alice’s public key V4 = ¢*4 one performs the following
steps.

1. Compute h = v~' mod r.
2. Compute hy = mh mod r, and hy = Vh mod r.

3. Compute V’ = g™ Vj"’.

S

. Verify that V/ = V.

2.4. Cryptographic Primitives Based on the Discrete Logarithm Problem 8

The verification works because from (2.2) we have
vV = gh1 (gkA)h2 _ gmhgkAVh _ g(m+kAV)h _ g(uv)h —gu=V.

If someone now wants to forge Alice’s signature for m, he/she would need to find a
pair (u,v) such that

gt =gm" flﬁw, w=0v"" mod r
holds. By first trying to fix u and solve for a suitable v (equivalently w) is a discrete
logarithm problem. On the other hand, fixing first v and looking for the correct u
becomes a mixed exponential congruence problem in u for which no efficient algo-

rithm is known. So we may say that the security of this signature scheme is closely
related to the discrete logarithm problem in G.

Chapter 3

Elliptic Curves

In this chapter we represent a brief introduction to elliptic curves and write down
some fundamental facts about their algebraic structure. We will follow quite closely
the representation given in Menezes’ book [Men93], complementing it with geometric
characterization of curves and filling in some details. Readers unfamiliar with field
theory are recommended to consult Appendix A for a quick tutorial on the topic.

3.1 Background and Definitions

3.1.1 Geometric Approach

A set of points (,y) € R? for which
v =23+ar+b, abeR, (3.1)

has classically been called an elliptic curve. This type of curves were historically
involved in determining the arc length of an ellipse — that is why they are been
called “elliptic”.

Figure 3.1 shows a way to define an operation for two points P and () on an elliptic
curve. First, we draw a line through P and). We see that this line intersects the
curve in exactly one more point, labeled R. We define the result of the operation to
be the mirror image R’ of R with respect to z-axis. This result will be from now on

called the sum of P and) and denoted P+ Q = R’.
It is clearly seen that the operation outlined above is commutative, that is,
P+@Q=Q+P

By carefully drawing new points and lines to Figure 3.1 it is also possible to guess
or at least hope that the operation be associative:

(P+Q)+S=P+(Q+5).

So, it looks like we have found a new interesting algebraic structure within this curve.
However, some problems arise. For example, what would be the sum of R and R’ in

3.1. Background and Definitions 10

\
\
[
[
\
l i
\
\
\
\
[

RI

Figure 8.1: Adding two points on the elliptic curve y? = 23 — 22 + 4.

Figure 3.17 It is clear from the figure that no point of R? other than R and R’ will
satisfy equation (3.1). We seem to have run out of points.

Let us not give up yet. If R? is too small a space, why not try to fix this by embedding
this plane and the curve into some bigger structure? Geometrically, we would like
to try adding some extra material to the furthest edges of the plane — a horizon. To
do this, we need some machinery from algebraic geometry.

3.1.2 The Projective Plane

Since the algebraic concepts to be introduced depend only on the field structure of
the coordinate axes of the plane, we will fix K to denote any field in what follows.
Define two nonzero points in the affine space K3 to be equivalent if they are scalar
multiples of each other. This is clearly an equivalence relation. The equivalence class

corresponding to the point (X,Y, 7) € K3\ {(0,0,0)} will be the set
(X:Y:2) = {(AX,A\Y, A7) e K3 | A € K},
that is, a line in K3 passing through the origin.

Definition 3.1. The projective plane P?(K) over K is the set of all lines in K> that
intersect the origin:

PAK) = {(X:Y:2) | (X,Y,Z) € K*\ {(0,0,0)}}.

3.1. Background and Definitions 11

A point (X :Y :7) in the projective plane can be uniquely represented by any
nonzero point of the line (X :Y :7) C K3. The set of nonzero points of the line
is consequently called the set of projective (homogeneous) coordinates for the point

(X:Y:2).

If 7 #0, then (X:Y:7) = (X/Z :Y/Z :1). Thus, the projective plane has a
decomposition into two parts

PXK) = {(X:Y:1)| X,Y e K} U{(X:Y:0)| (X,Y,0) € K>\ {(0,0,0)}}.
(3.2)

The former part can be interpreted as an affine plane K> while the latter could be
called the “line at the infinity”. So the projective plane looks like an ordinary plane
with its edges at the infinity glued to the horizon, see Figure 3.2.

3.1.3 The Weierstrass Equation

From now on, K shall be the algebraic closure (see Definition A.28 in Appendix A)
of K. A Weierstrass equation is a homogeneous equation of degree 3 of the form

Y2Z 4+ a1 XYZ 4 a3V Z? = X3+ auX?Z + ay X 7% + a6 22, (3.3)
where ay,...,ag are elements of K. With this equation we associate a polynomial
F e K[X,Y, 7]

FIX,Y,2)=Y?Z+ XY Z 4+ asY 7% — X3 — s X*7Z — a4 X 7* — ag 7°.
Since every monomial of F' has degree 3,
F(AX,\Y,\Z) = M3F(X,Y, 7),

and thus for nonzero A € K, F(AX,\Y,\7) = 0 if and only if F(X,Y,Z) = 0. By
this observation, we can define a point P = (X:Y:7) € P¥(K) to be a zero of F if
F(X,Y,Z)=0. In that being the case, we write F'(P) = 0.

The Welerstrass equation is said to be smooth if for all points P = (X:Y :7) €
P?(K) that satisfy F'(P) = 0 the gradient of I’ at P is nonzero, i.e., at least one of
the partial derivatives (all of which monomials are of degree 2)

oF oF oF
8—X(P)’ 8_Y(P)’ G_Z()

is nonzero. Note that in a field with no metric structure we can formally define the
derivative of polynomial by the familiar rule

X =X j=1,2, ...

Now we are ready to give a rigorous definition of an elliptic curve.

Definition 3.2. An elliptic curve F is the set of all solutions of a smooth Weierstrass
equation. If the coefficients a4, ..., ag belong to K, then F is said to be defined over
K, and we denote this by F//K.

3.1. Background and Definitions 12

By examining the Weierstrass equation, we see that there is exactly one point in F
with 7 = 0, the point (0 : 1 : 0). By comparing with the decomposition (3.2), this
point is seen to be the only point of F outside the affine plane K’. This point is
called the point at infinity and denoted by O.

For the points of F' in the affine plane 7 # 0, using affine (non-homogeneous)
coordinates © = X/7 and y = Y/Z we may rewrite the Weierstrass equation as

y? + arzy + azy = 2° + asa’ + aqz + ag. (3.4)

The elliptic curve is thus the set of solutions of (3.4) in Kz, together with the point O.
Figure 3.2 illustrates this.

the point O

~

the line at infinity

Figure 8.2: An elliptic curve sketched in the projective plane.

Definition 3.3. Let F//K be an elliptic curve defined over K. The set of K-rational
points of I is the set of points on F whose coordinates lie in K, together with the
point O. The set of K-rational points of F is denoted by F(K):

E(K) = (E/RNK*) U {0}.

Two elliptic curves F1/K and F3/K are defined to be isomorphic, if they are isomor-
phic as projective varieties. However, the clear explanation of these concepts would
need a considerable amount of background from algebraic geometry, which is beyond
the scope of this thesis. Fortunately, we have an equivalent characterization in more
tractable terms [Sil86, Chapter III]:

Theorem 3.4. Two elliptic curves F1/K and Fy/K, given by the equations

y2 + a1zy 4+ azy = 23 + a2$2 + a4 + ag
y2 + bizy + bgy = x5 & b2x2 + bax + bg

3.2. Basic Properties 13

are isomorphic over K if and only if there exists ¢y, co,c3,¢4 € K, ¢1 # 0, such that
the change of variables

(z,y) — (0%90 + ¢, ¢y + ciesz + c4)

transforms equation (8.5) to (3.6). The relationship of isomorphism is an equivalence
relation.

3.2 Basic Properties

3.2.1 The Group Law

Now we have all the machinery we need to complete the discussion about the al-
gebraic operation introduced in Section 3.1. Observe that the familiar definitions
from analytic geometry for line and tangent in R? can be generalized without any
modifications to the (non-geometric) plane K2.

Definition 3.5. Let F be an elliptic curve induced by the affine Weierstrass equa-
tion (3.4). For all P,Q € E\ {O}; P = (z1,11),Q = (w2, y2) define:

1. O+ P=Pand P+0O = P.
2. —0=0.

3. =P = (z1,—y1 — a1 — a3)
4. If Q = —P, then P+ Q = O.

5. If Q = P, then let R be the point of intersection of the curve F with its tangent
at P and define P +Q = —R.

6. If Q # P and Q # —P, then let R be the point where the line PQ through
P and (@ intersects the curve (or, if the line PQ is tangent to the curve at P,
let R = P, and respectively, if PQ is tangent to the curve at Q, let R = Q).
Define the sum P+ @ = —R.

The point at infinity will consequently act as an identity under the operation defined.
For a nonnegative integer n, we define

nP=P+---+P,
N ——

n

and similarly, nP = |n| (—P) for n < 0. The next theorem states the most important
fact about elliptic curves.

Theorem 3.6. Let F/ be an elliptic curve. Then the operation given above is well-
defined. With respect to this operation, I/ is an abelian group with identity element

0.

3.2. Basic Properties 14

The proof of the above theorem has one difficult part, the associativity law. An
algebraic argument doing the task using divisor theory can be found for example
in [Sil86, Section III.3].

To see how the group operation works, we will follow the presentation in [Sil86,
Section II1.3] and write down explicit formulae for computing sums of points in an
arbitrary field. For convenience, denote

flzoy) = 2% 4+ a22® + aux + a6 — y* — ayzy — agy,
whence, the affine Weierstrass equation is equivalent to
flz,y)=0. (3.7)

Let P = (z1,11) and Q = (22,y2) be points in F'\ {O}, and denote their sum by
P+Q = (z3,y3). If 21 =29 and y1 = —y2 — a122 — ag, then P4+ Q = O. Otherwise
the line PQ through P and @ (tangent to the curve F if P = Q) has the equation

y = Ar+ 5.

By substituting this into equation (3.7), we get a polynomial equation of degree
3 in variable z. Since we are working in an algebraically closed field, the monic
polynomial f(z, Az + () splits as

flz, Ae 4 8) = (z — 21) (2 — 29)(z — 23), (3.8)

where 23 is the coordinate we are looking for. By extracting both sides of (3.8) and
comparing coefficients for 22, we get

961—|—$2—|—x3:/\2—|—a1A—a2.
This gives us z3, and substituting it to the equation of the line we get
ys = Az + 5.
After a short calculation, the values for A and # can be seen to be

Y2 — W1 Y1y — Y21
A= 7 f="—"—"""

r9 — w1 Ty — 21
if 21 # x5, and

—xif + a4z + 2a¢ — asyr
2y1 + a1 + a3

_ 322 + 2a971 + a4 — a1y1 4=
2y1 + a1y + ag 7

if Tl = Z9.

The above formulae imply that the geometrically defined elliptic curve operation can
be computed performing just a few arithmetic operations in the underlying field.
Especially, the next fact is now clear.

Theorem 3.7. If I is defined over K, then F(K) is a subgroup of /K.

3.2. Basic Properties 15

3.2.2 The Discriminant and the j-Invariant

There are two important quantities that characterize elliptic curves. To define them,
we assume that our elliptic curve F is given by the Weierstrass equation (3.4) and

define

dy = a% + 4aq

dy = 2a4 + aqas

dg = a% + dag

dg = a%a(; + dagag — ajazay + a2a§ — ai

A = —d3dg — 8d3 — 27d2% + 9dydydg (3.9)
J(F) = (d} — 24d4)3/A. (3.10)

Definition 3.8. The quantity A defined by (3.9) is called the discriminant of the
Weierstrass equation and j(F) in equation (3.10) is called the j-invariant of the
elliptic curve.

The next two theorems [Sil86, Section III.1] show the significance of these quantities
and that the j-invariant is well defined for all elliptic curves.

Theorem 3.9. The Weierstrass equation (8.3) is smooth, if and only if A # 0.

Theorem 3.10. If two elliptic curves F1/K and Fy/K are isomorphic over K, then
J(F1) = j(F2). If K is an algebraically closed field, the converse also holds.

3.2.3 Curves over K, char(K) # 2,3

If an elliptic curve is defined over a field K with a character char(K) that is neither 2
nor 3, we will see that the Weierstrass equation (3.4) gets a much neater form. First,
if char(K) # 2, division by 2 is possible, and we can apply a change of variables in
accordance with Theorem 3.4:

(z,y) — (w,y— —r - —=
The resulting curve F’/K will have the defining equation
y? = 2% + bya? + by + bg.
If in addition, char(K) # 3, making a consecutive change of variables

x—3by y
(@, y) = (36 ’216)

will yield another elliptic curve E”/K over K, with a Weierstrass equation

v =234+ax+b, abek (3.11)

This is exactly the equation (3.1) with K in place of R in Section 3.1. So we see
that in a field with characteristic char(K) # 2, 3, every elliptic curve F//K over K is
isomorphic to a one represented by (3.11).

3.3. Elliptic Curves over Finite Fields 16

Elliptic curves over fields with char(K) # 2,3 of interest include those over C, R,
Q and the finite fields F,,, where p is a prime greater than 3. Especially, properties
of elliptic curves over QQ are deeply related to many big questions in number theory.
For example, in 1995 Andrew Wiles [Wil95, WT95] succeeded to prove the famous
Fermat’s Last Theorem by proving a conjecture about elliptic curves over the ratio-
nals. From the implementation point of view though, the most interesting curves
seem to be the elliptic curves over finite fields of characteristic 2. Consequently, the
rest of this thesis will strongly emphasize on them.

3.3 Elliptic Curves over Finite Fields

Throughout this section, F, will stand for the finite field with ¢ = p! elements, where
p is a prime and [is a positive integer.

3.3.1 Number of Points

Assume that an elliptic curve F/F, over F, is given by equation (3.4). We wish to
determine the number of F,-rational points of F/F,, which is denoted by #FE(F,).
For fixed 2 € F,, the elements y € F, that satisfy (3.4) are zeros of the polynomial

fy) =y + (12 + a3)y — (22 + aga® + agz + ag).

Since this polynomial has degree 2, we see that for each z, there are at most two
possible y in F, such that (z,y) € F(F,). So we get an upper bound

#E(Fy) <2¢+ 1.

Heuristically, we could assume that the parameters of the above quadratic polynomial
are uniformly distributed over F, as z varies over F,. Since it can be shown that a
quadratic equation with random parameters is solvable in F, with probability 1/2, it
seems reasonable to assume that the total number of points of /(F,) is not far from
g + 1. Consequently, we now fix a symbol ¢ such that

#EF,)=qg+1—1t. (3.12)
The next fact [Sil86, Section V.1] known as Hasse’s Theorem validates our reasoning.

Theorem 3.11. Let E/F, be an elliptic curve over the finite field F,. Then [t| <

2,/7.

Using the symbol ¢, we can now characterize an important class of elliptic curves over
finite fields in a convenient way [Men93]. For more general definitions, see [Sil86,
Section V.3] or [Har77, Section IV.4].

Definition 3.12. The elliptic curve F/F, is said to be supersingular, if t is divisible
by p. Otherwise, it is called non-supersingular.

If an elliptic curve is defined over F,, it makes also perfect sense to look for solutions
to the corresponding Weierstrass equation in an extension field F .. Then F(F;) be-
comes a subgroup of F/(IFx). As a corollary of Hasse’s Theorem we get the following
estimate (see Corollary A.39 in Appendix A).

3.3. Elliptic Curves over Finite Fields 17

Corollary 3.13. Let F/F,; be an elliptic curve defined over F, and F/F,, k =
1,2,..., be extensions of E/F, obtained by the above procedure. Then

#E(F,) = #E(|Fp) = Jim B (F) = oo.
k=1

Proof. By Theorem 3.11, we have a lower bound

#E(F) > " +1 -2k = (¢"* = 1)? - 0,
as k — oo. U
The Weil Theorems, see [Sil86, Section V.2], when applied to elliptic curves can be

used to determine the exact number of points in F/(F,») when F has its coefficients
in F, [Kob87a.

Theorem 3.14. Let E/F, be an elliptic curve defined over F, and let o and 3 be
compler numbers determined from the factorization

1 —tT 4+ qT* = (1 — aT)(1 - T),

where t is as in (8.12). Then, for k =1,2,..., the number of F i -rational points in
the extension field /R« is

#HEFp) =" +1-ak - g

3.3.2 Group Structure

To discuss the group structure of elliptic curves, we need some terminology concern-
ing abelian groups.

Definition 3.15. Let (G, ..., be subgroups of an abelian group GG. Their sum is
defined to be the set

G1++Gr:{gl++gr|gl€Gu ’L':17...77‘}.

The sum of G, ..., G, is called direct, if its each element is uniquely represented in
the form g; + - - -+ ¢, with g; € G;; that is,

g1+t g =91+t

if and only if g; = ¢/ for all i = 1,...,r. We denote direct sums by

Pci=cio- 0.
i=1

It is clear that the direct sum 1 & --- @ (G, is isomorphic to the cartesian product
group G1 X --- X (G, with component-wise addition.

We denote by Z,, the additive group of integers modulo n. Note that every finite
cyclic group of order n is isomorphic to Z,. The following is a fundamental result
from the theory of abelian groups [Nic93, Chapter 7].

3.3. Elliptic Curves over Finite Fields 18

Theorem 3.16. FEvery finite abelian group G is a direct sum of cyclic groups. There
exists integers s, ny, ..., ns uniquely determined by G, such that n;y; divides n; for
each @ and

Gl @ P L. (3.13)

The integer s in equation (3.13) is called the rank of G and the corresponding s-tuple
(n1,...,ns) is called the type of G. If H is an abelian group with type (m1,...,m,)
such that r < s and m; divides n; for each ¢, we say that H has smaller type than

G.

Definition 3.17. Let F be an elliptic curve defined over F,. If a point P € F(F,)
satisfies nP = O, it is called an n-torsion point. The set of n-torsion points on the

curve F/(F,) is denoted by E[n].
Note that the above definition allows F[n] to include points that are not F,-rational
even if IV is defined over F,.

The core information we need about the group structure of elliptic curves is collected
in the next theorem [Sil86, Men93].

Theorem 3.18. Let I/ be an elliptic curve defined over IF,.
o F(F,) is an abelian group of rank 1 or 2. That is, F(F,) ~ Z,, & Z,,, where
ng divides ny, and furthermore ny divides ¢ — 1.
o Ifged(n,q) =1, then E[n]~Z, & Z,. If n = p°, then

F{n] ~ {{O} if I supersingular,

Zipe if I/ non-supersingular.

Note that according to the notation above, F/(F,) is cyclic if and only if ng = 1.

We will not go into proof of Theorem 3.18, since it involves rather heavy machinery
from algebraic geometry. Instead we’ll use the above results to derive two necessary
conditions for rationality of n-torsion points. This check will be useful in Chapter 4.

Theorem 3.19. Let E/F, be an elliptic curve and ged(n,q) = 1. Assume E[n] C
E(F,). Then

1. n? divides #FE(F,) and

2. n divides ¢ — 1.

Proof. Consequence 1 is clear after observing that F[n] is a subgroup of E. For the
second part, we use Theorem 3.18 to write E/(F,) ~ Z,,, & Z,,, where ny divides n;.
Let [[, p;* be the prime factorization of ngy and [], p?i I1; ¢;' be the corresponding
factorization for nq with d; > ¢;. Then we can write

Ziny & Tiny = D L1 O DL 1, P L = P G(0i) &P G a0),
i ' j J i i j

3.4. Binary Elliptic Curves 19

where

Glpi) =Ly O L g, Gl4i) = L.
Similarly, if n factors into primes as [, rk , We may write

Zn®Zn=EDG(r), withG(re) =2 5, &L y.
L k k

From the theory of abelian groups [Nic93, Chapter 7] we know that if Z,, & Z,, has
a subgroup of the form Z,, & Z,,, then its every ri-primary subgroup G/(rx) has to be
a subgroup of either G/(p;) or G(¢;) for some i or j. However, the (noncyclic) group
G (r) can’t be a subgroup of any (cyclic) group G/(¢;), since subgroups of a cyclic
group are cyclic [Nic93|. Thus, for every k, G(ry) is a subgroup of G(p;) for some i.

While it is also true [Nic93, Chapter 7] that subgroups of G(p;) have smaller type

fe _

than G(p;), we conclude that r;] p ' for some ¢ with d} < ¢;. Since this holds for

every factor ri of n, we see that n divides ny. Using once more Theorem 3.18, ngy
divides ¢ — 1 and hence, so does also n. O

3.4 Binary Elliptic Curves

3.4.1 Adding Points on Non-Supersingular Binary Curves

Now let us turn our attention to elliptic curves over a field of characteristic 2, we’ll
call these binary elliptic curves. Assume F//Fym is given by equation (3.4). Since
doubling annihilates elements in Fym, formula (3.10) for the j-invariant gets very
nice form:

J(E) = ai?/A.

Combining this with the following fact [Sil86, Chapter V], we get a simple criterion
for supersingularity.
Theorem 3.20. An elliptic curve over a finite field B, of characteristic 2 is super-

singular if and only if j(F) =0

In the non-supersingular case, i.e., a; # 0, we can make a change of variables ac-
cording to Theorem 3.4:

2 3

as ajas +a
(z,y) = (ajz + =, aly + T—5—2) .
al a

1

This will result in the simplified Weierstrass equation
v +rey=a>+az’+b, a,beFom, b#£0, (3.14)
with A = b and j(F)=1/b.

Specializing the addition formulae derived in Section 3.2 we get simplified addition
formulae for binary non-supersingular elliptic curves.

3.4. Binary Elliptic Curves

20

Theorem 3.21. Let E/Fym be an elliptic curve induced by equation (3.14). Let
P = (z1,y1) € E/Fym. Then —P = (z1,151 +x1). If Q@ = (22,y2) € F/Fom and

Q # —P, then P+ Q = (23, y3), where

e — (y1+y2)2+ y1 + 2
’ X1+ 29 X1+ 29

+r1+2r0+a

and

(Tt
If P=Q, then P+ Q = 2P = (u3,y3), where
b
vy =i+ —
1

and

y:s:wf—l-(m—l-z—i) 23 + 3.

3.4.2 Addition Formulae for Supersingular Curves

If j(F) =0, so is also a1, and the admissible change of variables

(x,y) = (2 + az,y)

modifies the corresponding Weierstrass equation to

Y 4+ay=a3+br+c, abceFym, a0.

For this curve, A = a*.

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

In a similar manner as with non-supersingular curves, we write down explicit formulae

for adding points for these curves.

Theorem 3.22. Let F//Fom be an elliptic curve given by equation (3.19). Let P =
(z1,y1) € E/Fym. Then —P = (z1,y1 +a). If Q = (z2,y2) € F/Fom and Q # —P,

then P+ Q = (x3,ys3), where

Y1+ Y2 2
9632() + 21+ 22
21+ @2

and

(it
Y3 = (T—I—m) (14 23) + 1 +a.

If P=Q, then P+ Q = 2P = (u3,y3), where

av‘ll—l—b2
= 2

ry =
a

and

234+ b
y3:(la)(961-|-963)‘|‘y1—|-a-

3.4. Binary Elliptic Curves 21

3.4.3 Isomorphism Classes of Binary Curves

To complete our categorization of binary elliptic curves, we will count the number of
their isomorphism classes and write down a representative for each class. Towards
this end, next lemma will be useful (for the definition of trace, see Section A.4.3 in

Appendix A).
Lemma 3.23. FEguation

4 ex+d=0, c,deFym, c#0 (3.20)
has a solution in Fym if and only if the trace of ¢=2d, Tr(c™%d) = 0. If @ € Fym is

one solution to (3.20), then the other solution is o+ c.

Proof. Assume o € Fym satisfies (3.20). Then, since squaring over fields of character-
istic 2 is linear, it immediately seen that « 4 ¢ is also a solution. Multiplying (3.20)
by ¢=2 and applying the trace function, we get

0="Tr(0) = Tr((c ') + ¢ a4 ¢72d) = Tr(c72d).

Assume next that Tr(c~2d) = 0 and let 3 be a root of the polynomial #? + ¢z + d in
Fym. Then we have

0= Tr(e™d) = Te(c™ 5 + (7' 5)?)

m—1) m—1)
— Z(C—lﬁ)w + Z[(C—lﬁ)2]2’ — C_lﬁ + (C_lﬁ)Zm.
=0

1=0

k3

Hence (¢7'3)?" = ¢!, which implies by Corollary A.40 that ¢~'3 € Fym and thus
also 8 € Fym. O

Theorem 3.24. Assume two non-supersingular elliptic curves Fi and Fy, given by
equations

y 4+ ay =23+ ai2® + by, by #0, (3.21)
y? 42y = 2 4 agx’ 4+ by, by £ 0, (3.22)

respectively, are isomorphic. Then

o a4y =ay + s+ s> for some s € Fym,

® by = by.
The isomorphism maps rational points of Fy according to (z,y) — (z,y+ sx).

Proof. Recall that by Theorem 3.4, we have constants ¢y, ¢y, ¢3,¢4 € Fom, ¢4 # 0,
such that the change of variables

(z,y) = (] + ea, By + clesz + cy)

3.4. Binary Elliptic Curves 22

transforms equation (3.21) to equation (3.22). Substituting these new variables
into (3.21) yields

Syt + Sey + Segy = B3 el (A + ez o+ ar)az? + E(caes +eg +)
+ ci + cocq + c‘% + alcg +b1. (3.23)
Comparing coefficients of equations (3.21) and (3.23), we get relations

01:1,
02204:07
ay = ay + c3+ c3,
by = by.

This proves our contention.]
Combining Lemma 3.23 and Theorem 3.24 we get a comprehensive list of isomor-

phism classes of non-supersingular binary elliptic curves.

Corollary 3.25. The number of equivalence classes of non-supersingular elliptic
curves over Fom equals 2(2™ — 1). Let v be an element of Fom, for which Tr(y) = 1.
Then

{’ +aey =2+ ar’+b|aef{0,9},b€ Fom} (3.24)

is a set of representatives for these isomorphism classes.

Proof. Let F be a non-supersingular elliptic curve given by
v +aey=a>+az’+b, a,be2™ b#0.
Now if Tr(a) = 0, let s be a solution of equation
0=a+ 2+ 22

in Fym , which exists, by Lemma 3.23. Now we see that I/ be isomorphic to F’, given
by equation

y 4 2y =2>+b.
Similarly, if Tr(a) = 1, we let s be a solution of
Yy=a+z+ x2
in Fym. We then find out that F is isomorphic to a curve given by
y2+xy:x3—|—7x2—|—b.

So every non-supersingular elliptic curve over Fym is isomorphic to one given by
equation of the form (3.24).

To prove the uniqueness of this representation, assume F; and Fy are isomorphic
curves given by equations of type (3.21) and (3.22), respectively, with a1, as € {0,7}
and by, by € Fym. Then by Theorem 3.24, by = by and further as = a4 s+ s* implies
that Tr(a1) = Tr(az). Hence a; = az and we are done. O

3.4. Binary Elliptic Curves 23

In essentially the same way, a similar treatment can be carried out for supersingular
curves. The results are summarized in the next two theorems. For detailed proofs,
see [Men93, Chapter 3].

Theorem 3.26. If m is odd, there are 8 isomorphism classes of supersingular elliptic
curves over Wom. A representative from each class is

y ty=a

v ry=a’ta
y2—|—y:x3—|—x—|—1.
Theorem 3.27. If m is even, the number of isomorphism classes of supersingular

elliptic curves over Fom equals 7. Let v be a non-cube in Fom and § an element in
Fom such that

S+ 8% 462 4o a2 20,

Let a, 3,w € Fym be such that Tr(y~2a) = Tr(y=*3) = Tr(w) = 1. Then a represen-
tative of each class is:

v + oy =’
V+yy=2"+a

v+ vty =a?

v +ly =245
y +y=a’

y2—|—y:x3—|—5x
y2—|—y:x3—|—w.

Chapter 4

The Discrete Logarithm Problem

4.1 Complexity of Discrete Exponentiation

We begin by defining some useful complexity theoretic notation.

Definition 4.1. Let f and ¢ be two functions from the set of positive integers to R
that take on positive values for all n > ng for some ng > 0.

e f(n) =0(g(n)), if there exists a positive constant ¢ and a positive integer ng
such that 0 < f(n) < cg(n) holds for all n > nyg.

e f(n) =o(g(n)), if for any positive constant ¢ there exists a positive integer ng
such that 0 < f(n) < cg(n) for n > nyg.

Intuitively, f(n) = O(g(n)) means that ¢ is an asymptotic upper bound of f. If in
addition f(n) = o(g(n)), this upper bound ¢ of f is not tight in the sense that ¢
will asymptotically bound f, even if f is scaled by an arbitrary large scalar factor.
Notation f = O(1) means that f is bounded, while f = o(1) is a shorthand for
expressing lim f(n) =0, n — oo.

For comparing performance of different algorithms, we can categorize them by the
following definition. By the size of the input for an algorithm we mean the number
of bits required to represent the input in ordinary binary notation. The running time
of an algorithm is the number of “elementary” operations executed.

Definition 4.2. An algorithm with worst-case running time f(n), where n is the
input size is said to be

e polynomial-time, if f(n) = O(n") for some positive constant v,

o subezponential-time, if f(n) = e9") for some g with g(n) = o(n),

o exponential-time, if f(n) = e9(") for some g with g(n) = O(n¥), where v > 0.
A randomized algorithm is said to be probabilistic polynomial-time (respectively

subexponential-time) if its expected running time can be bounded by a polyno-
mial (subexponential) function in the size of the input. We further categorize the

24

4.2. General Methods for Finding Discrete Logarithms 25

subexponential-time algorithms using the notation

Lin,c,a] = O(€(C+0(1))(1Hn)o‘(lnlnn)l_o‘)

9

where n is the input (with size O(Inn)), ¢ is a constant and 0 < o < 1. Note that
L[n, ¢, 0] is polynomial-time, while L[n, ¢, 1] is fully exponential in In n.

Using the above terminology, we may now characterize one-way functions to be
such that direct evaluation of their values can be done in polynomial-time, while no
subexponential-time algorithm for inverting them is known.

The cryptosystems presented in Sections 2.2 and 2.4 all relied on the assumption that
discrete exponentiation in a finite group is one-way. Let us check first the assumption
about the direct computation of values. Suppose we want to raise an element g € G
to the kth power, where (G is a finite group of order n. We may suppose 1 < k < n.
After writing & in binary form,

r—1
k=Y k2, ki€{0,1},
=0

we immediately find out that
k 7
=TI
el
where I represents the set of nonzero bit positions of k. So exponentiation in G
is accomplished rather rapidly by repeated squaring, with at most [2log k| group

operations. Regarding n as the size of the input, we see that discrete exponentiation
in GG takes O(logn) operations, i.e. is polynomial-time.

The next sections are devoted to investigating the validity of the second assumption
made in claiming one-wayness of exponentiation by exploring best known algorithms
for computing discrete logarithms.

4.2 General Methods for Finding Discrete Logarithms

From now on, GG will stand for a finite cyclic group of order n generated by g.

Definition 4.3. Let o be an element of G. The problem of finding the unique
integer 0 < k < n, for which ¢* = « is called the discrete logarithm problem (DLP).
The solution is denoted

k =log, a,

and called the discrete logarithm of « to the base g.

The first thing to try when faced with the of problem determining a discrete logarithm
might be to start computing powers of ¢ until the right one appears. However, the
worst case running-time for this method is exponential O(n).

Observe also, that the mapping

Zn2k—g*ed

4.2. General Methods for Finding Discrete Logarithms 26

is a group isomorphism between G and (Z,, +), the group of integers modulo n. In
(Z,+), exponentiation to the kth power means scalar multiplication modulo n, and
taking discrete logarithms reduces to computing inverses modulo n, which takes only
polynomial time in n using the extended Euclidean algorithm [Ros88]. However, the
fact that the groups (Z,,+) and G are isomorphic does not imply that the DLP is
equally easy in both groups — this is just another way to formulate the DLP: find an
efficiently computable group isomorphism between G and (Z,, +).

4.2.1 Square-Root Methods

Square-root methods use precomputation tables to cut down the amount of exponen-
tiations in solving the DLP. For example, the so-called baby-step giant-step method
works as follows. Denote v = [\/n]. If k¥ = log, @, then k can be uniquely written
as k = jv+1, with 0 <4, j < v. The first step is to precompute a list of pairs (1, ¢*)
and sort this list by the second component. Next, for each j in the range 0 < j < v,
compute ag~7 and use binary search to check if this equals ¢' for some i. When
such integer j is found, we see that

o= gi+j”.

Hence we have the desired value, log, @ = i + jv. The number of operations this

method takes is O(y/nlogn).

A slight refinement of this method is Pollard’s p-method [Pol78]. By introducing
some probabilistic behavior, the expected running time is conjectured to be O(y/n).
Using the present computing technology, both these methods become infeasible, when
n is larger than 104°,

Pollard’s method can be further improved by assuming that the prime factorization
of the order of the group is at hand:

r
_ A
n= p, 9
i=1

where p; are distinct primes and A; positive integers. The result is obtained by first
solving the unknown modulo pj‘i and then using the Chinese Remainder Theorem
to write down the result. This Pohlig—Hellman method requires O(>_._; A;(logn +
/D, log p;)) group operations [PH78] and is thus efficient if the order of the group is
a smooth integer, that is, all primes dividing n are relatively small.

4.2.2 The Index Calculus Method

The index calculus method is based on the use of a factor basis; a subset I' =
{71,...,7} of G. This method also involves a precomputation step. The general
idea looks as follows. Fix a random integer s € Z and try to express ¢°® using the
factor basis I':

g =[]+ (4.1)
=1

4.3. The Elliptic Curve Discrete Logarithm Problem 27

If such integers s, g; are found, then by taking logarithms, we see that
s = Zgi log, i (mod n).
i=1

Our aim is to generate a solvable system of linear equations by repeatedly choosing
suitable integers s. Proceeding this way, we can in principle find the logarithms
log,, 7; of the factor basis.

At the second stage, we again try random integers s to get an equality
r
ga =TT (4.2)
i=1
If we are successful, this will yield the result

log, o = Zlog% —s mod n.
i=1

The above description of the method leaves few open questions. First, the selection
of I' should be such, that it generates as large subgroup of G as possible, while at the
same time the number of elements in ' should be kept small in order the precomputa-
tion tables be small. Also, it is not clear in general how to efficiently create equalities
of type (4.1) and (4.2). For multiplicative groups of finite fields some usable algo-
rithms have been proposed. For example, Coppersmith’s algorithm [Cop84] solves the
DLP in F;, with heuristic running-time L[2™, ¢, 1/3], where 1.3507 < ¢ < 1.4047.
The best algorithm for this group with rigorously proved expected running-time
L[2™,/2,1/2] is due to G. Simmons [Sim91].

4.3 The Elliptic Curve Discrete Logarithm Problem

4.3.1 MOV Reduction

The reason for cryptographic interest concerning elliptic curves is that solving the
DLP in the group E(F,) of F,-rational points of an elliptic curve seems extremely
difficult. We reformulate this with respect to additive notation.

Definition 4.4. Let F/F, be an elliptic curve over the field F, and S and T points
in F(F,). Assume that the order of T" is n. The elliptic curve discrete logarithm
problem (ECDLP) is to find and integer 0 < k < n — 1 such that

S =kT.
If such k exists, it is called the discrete logarithm of S with respect to T and denoted
k =logr S.

For the rest of this chapter, T will be a fixed point of order n on an elliptic curve

E(F,).

4.3. The Elliptic Curve Discrete Logarithm Problem 28

Menezes, Okamoto and Vanstone [MOV93, Men93] have invented a way to reduce
the ECDLP in the group F/(F,) to DLP in F;... They use a mapping from F[n]x F[n]

to]ET;, called the Weil pairing to produce a group isomorphism between groups (77)
and p,, where p, is the subgroup of nth roots of unity in F,n. Here m will be
chosen to be the smallest integer such that E[n] C E(F,m). This m exists, since by

Theorem (3.18) F/[n] is finite, and by Corollary 3.13,

lim #E(Fym) = co.

m—oo

The isomorphism between (T') and pu,, is fixed after finding a suitable point @ € F[n]
and fixing m [Men93]. After fixing these two parameters, the isomorphism can be
computed in probabilistic polynomial time in log ¢ using Miller’s algorithm [Mil86a].
However, finding suitable) and m is not easy in general. If I//F, is supersingular,
is has been shown [Men93] that m < 6, which makes determining) and m possible
in probabilistic polynomial time (in log ¢). Recalling that the DLP in I, was seen to
be solvable in subexponential time, we summarize these observations in the following
theorem.

Theorem 4.5. [Men93] Let T be an element of order n in a supersingular elliptic
curve E(F,) and let S € (T). If q is a prime, or if ¢ is a prime power q = p', where
p s fized, then logr S can be determined in probabilistic subexponential time in logq.

What about the non-supersingular case, is there a subexponential-time algorithm
for solving the ECDLP then? According to Section 4.2.2, we assume that the best
algorithm to solve the DLP in F, has complexity L[q,c,1/3]. The MOV reduction
thus yields a probabilistic complexity L[¢™, ¢, 1/3]. We can now write down two
necessary conditions for the MOV reduction to solve the ECDLP in subexponential-
time:

1. A necessary condition for L[¢™, ¢, 1/3] to be subexponential in Ing¢ is that
m < (In g)%.

2. For E[n] C E(Fym) to hold, ¢ — 1 must be divisible by n, see Theorem 3.19.
(We may assume ged(n, q) = 1 [Men93].)

For large random n, finding an m that fulfills both of the above conditions seems
highly unlikely [Men93, Kob91]. Thus, for most non-supersingular elliptic curves,
the MOV reduction is of no practical use in solving the ECDLP.

4.3.2 Index/Xedni Calculus on Elliptic Curves

For the DLP in F;, the most efficient solving method is the index calculus that
was seen to run in subexponential-time. What are the chances of adapting this
method to elliptic curve groups? The major question is how to choose the factor
basis? In the finite field F,, there is a natural choice of regarding points of F,, as
integers. In this case a natural factor basis would be to take the set of r smallest
primes. Then writing down equations for powers of the generator reduces to integer
factorization, which has been widely studied and for which efficient algorithms have

4.3. The Elliptic Curve Discrete Logarithm Problem 29

been developed [LL93]. For elliptic curves there seems to be no feasible candidate
for a factor basis.

Miller [Mil86b] and Silverman [SS98] have investigated the possibilities of doing index
calculus on elliptic curves defined over F,, (p > 3) by lifting them to curves over Q. To
see what this means, let us fix an elliptic curve F,/F, parameterized by coefficients
ap, b, € Fp,. Further, denote by p the reduction map that maps integers to F,,

p:Z>x—z modpel,

For clarity, we label images of p by p(a) = a’. Denote by Q, the set of rational
numbers whose denominator is not divisible by p. Now p can be extended to Q, by

defining

p:Q,3r/s— ()71 €T,

Now, given a curve F//Q parameterized by a,b € Q,, we can determine a reduction
of this curve by mapping a,b to a’,b" € F,. The resulting parameters o', b’ now
determine an elliptic curve E’ over F,,. This is called the reduction of E/Q modulo
p. Lifting the curve E,/F, to F//Q means finding an elliptic curve I over Q such
that E’ equals E,/F,. Note that this lifting procedure is not a well-defined map. In
fact, there are infinitely many choices for a suitable £/Q.

Now we are ready to give a brief outline of how the index calculus could be used to
compute logy S, where S, T € E,(F,). As before, n is the order of T'.
1. Try to lift F,/F, to £//Q such that F'/Q has a reasonably large number of
linearly independent points Py,...P. € E(Q).

2. For j=1,2,...,compute jT € E,(F,) and try to lift this to a point T} € F(Q).
This means finding a point 7; = (2;,y;) € F/(Q) such that T = (2, y;) equals
JT in E,(F,). If this is successful, try to write 7; with respect to the factor
basis {Py,..., P };

T]‘ = Zn,’jpi, n;; € Z. (4.3)
=1

3. Since reducing coordinates modulo p preserves the group structure, after r
successful steps in Step 3, we have r linear equations

r / r
JjT=T)= (Z nija) = niiP in Ey(F,).

Assuming P! € (T'), we can write P/ = (logy P/)T. Hence we get a system of
r linear equations modulo n:

j =Y nijlogr P (mod n),
=1

which can be solved for logy P/.

4.3. The Elliptic Curve Discrete Logarithm Problem 30

4. Next try to lift S, S4+7,5+27T,... to F(Q), say that S+vT lifts to S, € F(Q),

ie., S/, =S54+ vT. If we now can write
S, = isiPh s; €7, (4.4)
=1
we get as in Step 3:
logr S+ v = XT: s;logy P/ (mod n),
=1

which gives the desired solution.

Could the above procedure be implemented in practice? As Miller and Silverman
point out [Mil86b, SS98], a number of serious difficulties arise immediately.

First, it is difficult to find elliptic curves F//Q with a large number of rational points
of small height. Here the height of a point P € F/(Q) is roughly understood as being
the number of bits required to represent it. Also, elliptic curves over Q tend usually
have small rank. By the rank of F//Q we mean the nonnegative integer d in the
relation

E(Q) =~ Etors(Q) X Zd7

where the torsion subgroup Fi..s(Q) (the set of points of finite order) is finite. This
relation is justified by the famous Mordell-Weil Theorem [Sil86, Chapter VIII].

Theorem 4.6. The group F(Q) is finitely generated.

The problem with low rank elliptic curves is that the average height of points lifted
from E(F,) to E(Q) appears to be exponentially large in logp. Another major
obstacle is the problem of lifting points P € F/(F,) to F/(Q), which is a very difficult
problem in itself, possibly even more difficult than the ECDLP. To summarize, we
quote Silverman and Suzuki [SS98]:

- - our theoretical and numerical work fully supports Miller’s conclusion
that the natural generalization of the index calculus to the elliptic curve
discrete logarithm problem yields an algorithm which is less efficient than
a brute-force search algorithm.

One recent attempt to avoid the problems appearing in index calculus has been made
by Silverman [Sil98]. Instead of trying desperately to find elliptic curves of high rank
over Q, a completely different approach, dubbed zedni calculus is taken. It begins
by choosing points P, ..., P, € F(F,) and lifting them to points Q1,...,Q, € F(Q)
having integer coordinates. Then an elliptic curve F//Q is constructed, requiring it
to go through the points @Qq,...,Q,. This way, the difficulty of lifting points will
be avoided. Next, it is checked if Qq,...,Q, are linearly dependent. If they are,
the ECDLP is almost certainly solved [Sil98]. Thus the algorithm works, if the con-
structed curve F/(Q) has smaller than the expected rank. However (cryptographers:
read luckily), the points Q1,...,Q, will usually be linearly independent. Can we
consequently declare the (non-supersingular) ECDLP as intractable for good? The
answer is no. Active research is currently being made to modify the xedni calculus
to give better performance. Mathematicians won’t give up that easily.

4.4. Security of Cryptosystems Based on the ECDLP 31

4.4 Security of Cryptosystems Based on the ECDLP

4.4.1 Cryptographically Secure Elliptic Curves

Summing up the observations made in Section 4.3, we conclude that the best al-
gorithm known to date for solving the ECDLP is the Pollard-p method, with few
exceptions. The special cases for which there exists a quicker algorithm are listed
below.

1. If E[n] C E(Fym) for small m, where n is the order of the point 7" € F(F,),
the MOV reduction yields a probabilistic subexponential-time algorithm for
computing logy.

2. If n is smooth, i.e., it has no large prime factors, then the Pohlig-Hellman
algorithm makes solving the ECDLP feasible.

3. A recent result concerning the so-called anomalous elliptic curves over T,
(curves, for which #F(F,) = p) states that for this class of curves there exists
a polynomial-time algorithm to solve the ECDLP [SA97, Sem98].

Since the running time of the Pollard-p algorithm is exponential O(/n), we conclude
that constructing public key cryptosystems according to Section 2.4 over the group
(T) C E(F,) yields secure cryptographic primitives, when the underlying curve and
field are chosen so that none of the above conditions hold. Condition 1 is checked by
use of Theorem 3.19. Conditions 2 and 3 are also easily verified once the cardinality

#E(F,) is known. Easily implementable algorithms for checking these requirements
are listed in the draft IEEE P1363 standard [IEE9S].

4.4.2 Choosing the Key Length

The security of a cryptosystem is parametrized by the key length. For elliptic curve
cryptosystems, the private key is the integer 0 < k£ < n, where n is the order of the
generator point 7' € E/(F,). Usually, n is of the same size as q. To determine the
key length required to provide the desired level of security, one needs to estimate the
computing power of the potential attacker.

field size | size of n | computing power
(bits) (bits) (mips-years)
163 160 9.6- 10"
191 186 7.9-10"
239 234 1.6-10%3
359 354 1.5- 104
431 426 1.0 - 1052

Table 4.1: Computing power required to solve a single ECDLP with the
Pollard p-method.

4.4. Security of Cryptosystems Based on the ECDLP 32

Computing power will be measured in mips-years, the amount of computation per-
formed by 1 mips machine in a year. Conventionally, 1 mips machine is defined to
be equal to the DEC VAX 11/780 in computing power (the latest PC-generation has
estimated power of 300 mips). Odlyzko has estimated [Od195] that if 0.1% of the
whole world’s computing power were put to work through the Internet for a year,
there could be 2-10? mips-years available in 2004, and 10''-10'3 mips-years in 2014.

In the light of Odlyzko’s forecasts, it seems reasonable to require that a today’s
cryptosystem resist an attack of at least 10'?> mips-years. For elliptic curves, some
approximations [cer97] have been made concerning the hardness of the ECDLP.
These results are listed in Table 4.1.

For comparison, Table 4.2 (due to Odlyzko [Od195]) lists the approximated computing
power required to solve the problem of factoring an integer n using the general
number field sieve [LLI93], the best known factoring algorithm. RSA, currently the
most widely used public key cryptosystem, is based upon this problem [RSA78]. The
key lengths used in the RSA cryptosystem are the size of n.

size of n | computing power
(bits) (mips-years)
512 3104
768 2.108
1024 3-10M
1280 1-10™
1536 31016
2048 3-.10%0

Table 4.2: Computing power required to factor an integer n wusing the
general number field sieve.

Comparing the above tables, we see that elliptic curve cryptosystems can offer equal
level of security with the 1024-bit RSA using much shorter 160-bit keys. Therefore,
the use of elliptic curves provides a very interesting alternative to traditional methods
in public key cryptography. However, it should not be forgotten that the 160/1024-
ratio may either increase of decrease in the future, if better algorithms for factoring
integers or solving the ECDLP are found.

Chapter 5

Algorithms for Finite Field
Arithmetic

The reader unfamiliar with finite fields is advised to consult Appendix A before
proceeding with this chapter.

5.1 Representation of Finite Fields

5.1.1 Basic Operations

We know that the number of elements of a finite field is a power of a prime. Thus
from now on, ¢ will stand for the number of elements of a finite field, ¢ = p!, where
p is a prime and [is a positive integer.

Since the field F x is a k-dimensional vector space over F,, there exists a basis
{ag,...,ar_1} € F i such that an arbitrary element @ € F » can be uniquely pre-
sented as

a=apag + -+ ag_1ap_1, a; € Fy.

Elements of F» may thus be viewed as vectors with & F;,-components. We denote
this by @ = (ag_1,ar—2,...,a0). If b = (bg_1,...,bo) is another element of F ., we
see that the sum of a and b is
k—1
a+b= Z(a, + b,’)O&,’ = (ak_l 4+ br_1,...,a0+ bo).
=0
Hence addition in F » with respect to any basis over F, looks always similar. Clearly,

this holds also for subtraction in F x. The zero of F » is always given by (0,...,0);
a vector with £ zeros.

Let ¢ = (cg_1, ..., o) denote the product of @ and b in F x. Then

k-1 k-1 k-1
c=ab= E a; oy bjo; = E a;b; M; ;,
i=0 =0 i,j=0

33

5.1. Representation of Finite Fields 34

where
k-1
. — (t)
M, ; = ooy = g m, oy
t=0

for some elements mgt]) € F,. From this representation it is clear that the way
multiplication is computed depends heavily on the structure of the basis. In the
following section we will investigate how multiplication behaves in different bases.

5.1.2 Bases of Finite Fields
Polynomial Bases

Theorems A.21 and A.22 in Appendix A induce the simplest way to represent the
elements of a finite field Fx. Let P(z) be an irreducible polynomial over F, of
degree k (this exists by Theorem A.44). Then F» = F,(f), where 6 is a root of
P(z) in F .. Furthermore, the set {1,0, 62,...,05 1 is a basis of Fx over F,. As
the Theorem A.21 says, F,x may analogously be viewed as F,[z]/(P), the field of
polynomials over F, modulo P(z). This observation justifies the name of this basis.

Definition 5.1. The set {1,60,6%,...,65 1} of F,x over F,, where 6 is a root of an
irreducible polynomial P(x) over F, is called the polynomial basis of F x over F,.
The defining polynomial P(z) is called the field polynomial of F x over F,,.

Example 5.2. Consider the polynomial P(z) = 2* + 2 + 1 over Fy. Since P(0) =
P(1) = 1, P(z) has no roots in Fy and thus by Lemma A.23 no affine factors in
Fy[z]. The only irreducible second order polynomial over Fy is 22 + 2 + 1. By a
direct check it can be seen that this does not divide P(z). So we conclude that P(z)
is irreducible over Fy. A root 6 of P(x) spans now a polynomial basis over Fys and
the elements of Fy« can be represented by vectors with four bits.

3

a = (a3, ag, a1, ap) = E a;0', a; € Fy.
i=0

The product of a« = (1,0,0,1) and b = (0,1, 1,0) is given by
ab= (8> +1)(6* + 6)
=0+ 0"+ 0%+ 0
=0'0+1)+6%+96
=0+1)0+1)+6*+0
=02 +14+6°+0=0+1,
where, by definition, #* = 6 4 1. Thus the product of @ and b equals (0,0, 1, 1).

Note that the above method of first guessing a polynomial and then testing for its
reducibility is not computationally feasible in large fields. [MBG*93, Chapter 3] de-
scribes in detail general methods for constructing irreducible polynomials over finite
fields. For the special case of fields with characteristic 2, easily implementable algo-
rithms for doing this are given in [IEE98]. Several precomputed tables of irreducible
polynomials with minimal number of terms are reported in the literature, see for
example [LN97, IEE9S].

5.1. Representation of Finite Fields 35

Normal Bases

Another interesting basis for a finite field can be generated by repeatedly applying
the ¢th power map.

Definition 5.3. If for some o € Fx, the set
2
{a, 00, .. a7 }

is linearly independent, that set is called a normal basis of Fx over F,.

Following the tradition, an element a € F . represented with respect to a normal
basis

T
L

i

a = a;0, a; €T,

il
=}

7

is associated the vector notation @ = (ag, a1, ..., ax—1), reversing the notation used
for polynomial basis.

Example 5.4. Since P(z) = 2342241 has no roots in Fy, it is irreducible in Fy [x].
Let 6 be a root of P(z) in Fy:. By definition, 3 =6>+1,500"=0>+6+1. Now
it is easy to see that 6, 0% and #* are linearly independent over Fy, i.e., they form a
normal basis of Fys over Fy. If a = (ag, a1, az) € Fys, the square of a will be

a? = (apf + a10® + a204)2 = apf® + a10* + a260% = ay + apb® + a104,

i.e., squaring in Fys using this representation is a simple cyclic shift (aq, a1, a)? =
(ag, ap, a1). This remarkable property makes the use of normal bases quite appealing
for applications.

Using Galois theory, it can be proved [Lan65, Section 8] that every finite extension
of a finite field has a normal basis.

5.1.3 Duality in Finite Fields

In linear algebra, the dual of a vector space V over K is defined to be the set of
linear maps from V to K. We will next show a practical interpretation of this in the
context of finite fields. First we note that the map

Fqk X Fqk > (a, b) — Tr(ab) e,

is a bilinear form, i.e., linear with respect to both of its arguments. We denote this
mapping by Tr(ab) = (a,b).

Theorem 5.5. Every linear map L from Fx to F; can be uniquely represented by
an element 8 € Fyr such that

L(e) = (B,)

for all o € Fi.

5.1. Representation of Finite Fields 36

Proof. For any 3 € Fx, the map
Lg :Fqk S o <ﬁ,0&> e,

is obviously linear. Furthermore, for v # 3, Ly(a) — Lg(a) = Tr((y — f)a) # 0
for some o € F since trace is surjective by Theorem A.46. Thus every element
B € F yields a different linear map L 3. On the other hand, every linear map
from Fx to I, is uniquely given by assigning to a given fixed basis a; of F » arbitrary
values L(o;) € F,. This way we see that the total number of linear mappings from
Fx to Fy is ¢®. The mappings L already exhaust all of these, thereby proving the
theorem. O

After fixing our bilinear form (a,b) = Tr(ab), we may regard F s as its own dual.
Transmitting duality using the trace function is not the only alternative; one could
have chosen the ordinary inner product similar to that of R™ as well. But in order
to compute an inner product, an e priori basis of the vector space in question is
required. This explains our choice of the bilinear form. It depends only on the
structure of the underlying field of scalars, not on the choice of basis representation.

Definition 5.6. Given two bases {;} and {3;} of F » over Fy, {$;} is said to be a
dual basis of {a;}, if (o, B;) = d;;, where

0. it
by = { U
L=y,
is the Kronecker delta. If the basis {«;} is dual of itself it is called self-dual.

Theorem 5.7. For any basis {o;} of Fx over F, there exists a uniquely determined
dual basis.

Proof. Let

k—1

Za,’a,’, a; € Fq

1=0

be the representation of & € F x with respect to {a;}. Now the coefficients a; are
actually linear functions of . So, by Theorem 5.5 there exists 3; € F x such that

a; = (Bi,), L.e.,

1

o = <ﬁi,04>04i
=0
for all o € Fqk. For a = o,
k—1
oaj = Z(ﬁu@au
=0

which implies («a;, 3;) = ;;. The set {§3;} is linearly independent, since

k-1
Zb,ﬁ, =0, b€ Fq
=0

5.1. Representation of Finite Fields 37

implies
" k-1 k—1
0= biBiyaj) =D bilBisj) =Y bidij =b;
=0 i=0 i=0
for any b;. .

We state below a few theorems about the existence of dual bases without proof.
Theorem 5.8. The dual basis of a normal basis is a normal basis [MBG* 93].

Theorem 5.9. If k is odd, or if k = 2 (mod 4) and q is even, then there exists a
self-dual normal basis of F. over F, [LW8S].

Theorem 5.10. For k > 2, there does not ezist a self-dual polynomial basis of F
over Ty [TMV90].

5.1.4 Logarithm Tables

A vector space construction is not the only feasible choice for representing field
elements. Theorem A.42in Appendix A guarantees that the nonzero elements of the
field F, can be expressed as powers of a specific element 7, the generator of F;. Thus
we have:

F, = {0} U {v,7%...,v" "}

After fixing a generator v of F, we shall create a table containing all discrete loga-
rithms of elements F; to the base v, recall Definition 4.3. As was seen in Section 4.2,
there are no very efficient ways to compute discrete logarithms in a large finite field.
However, assuming ¢ to be small we can use brute force and compute all powers of
v beforehand. Then we can store a table of all pairs (a, log,, a) into memory.

The use of a logarithm table makes computation in F, easy. For example, to multiply
two nonzero elements ¢ and b one can proceed in the following way:

1. Find ¢ = log, a and j = log, b from the table.

2. Calculate v =¢+ 7 mod ¢ — 1.

3. Find ¢ = +” = ab from the table and return ¢ = ab.
Inverting a # 0 is just as trivial:

1. Find 7 = log, a using the table.

2. Calculate v = —¢ mod g — 1.

3. Find and return ¢ =v” = a~ .

The only drawback with this method is its huge memory requirement. For example,
for ¢ = 2% the logarithm table needs O (k2*) bits of memory.

5.2. Multiplication 38

5.2 Multiplication

5.2.1 Polynomial Basis Algorithms
A Two-Step Algorithm

Consider a finite field I« represented with respect to a polynomial basis generated
by 6, a root of the irreducible polynomial

k—1

P(z) = oF 4+ Zpiwi, pi € Fy.
=0

Let a,b € Fx,

k—1 k—1
a=> ait’, b=> b#', a;b €F,
=0 =0
and denote their product by ¢ = ab.

A convenient way to express the multiplication procedure is to associate with ¢ and
b the polynomials

k-1 k-1
A(z) =) az', B(z)= Zb,x’,
1=0 1=0

respectively. These polynomials represent the equivalence classes in F,[z]/(P) gener-
ated by a and b, respectively, according to Theorem A.21. We then multiply A(z) and
B(z) in F,[2]: C'(2) = A(2)B(z). Now reduction modulo P(z) yields a polynomial
in F,[2] with degree less than k:

ke
C(z)=C"(z) mod P(z) = Zc,w’

1=0

—_

By Theorem A.21, the coefficients ¢; € I, are indeed the ones we were looking for:

k—1

ab=c= Zc,ﬂi.

1=0

Thus the result may be obtained by performing the following two steps:

1. Ordinary polynomial multiplication in F,[z].

2. Reduction modulo the field polynomial P(z).

A direct way to perform the first step would be to simply write out the expression

for C'(x),

k—1 k-1 2k—2
C'(z) = A(z)B(x) = (Z aixi) ijxj = Z ', (5.1)
=0 :

1=0

5.2. Multiplication 39

from which the coefficients c;» are seen to be

06 = dy bo

/
c; = a1by + aghy

ot = ap—1bo + ag—2by + - -+ arbp_o + agbp_1
= ap_1b1 + ag_2by + -+ -+ a1bp_y

!
Cop—g = Qp—1bp—o + ap_2br_1

/
Cop—o = ag—1bg_1.

In the second step we need to write down the expressions %, ..., 2%~2in (5.1) using

powers of x not larger that £ — 1. While the mapping that yields this representa-
tion is obviously linear, we can implicitly define the reduction matriz R = (r; ;) €
(F,) =%k by requiring

2% mod P(x) 70,0 ro,l o Tok—1
21 mod P(z) 10 Mt Tlk—1 x
. = . .) (5.2)
2?%=2 mod P(z) Tk—2,0 Th—21 **° Tk—agk—1/) \aF7!

The reduction matrix depends solely on the defining irreducible polynomial P(z).
To compute its entries, we note that

k-1
z* mod P(z) = — ijxj,

7=0
which gives us the first column of R:

ro;=-rj, J=0,...,k—-1
The rest follows by recursion; for 1 < ¢ < k — 2,

2" mod P(z) = 2201 mod P(x)
k-1
=z Zf‘z—ijj mod P(z)
7=0
k-1
= Zri—l,j—1$j + r,'_l,k_lack mod P(z)

=1

k-1 k-1

_ . . J . o

= E Ti15-1%" + 11 k=1 E ro,;T
k-1

_ . . . N

= (ric1j-1+ ric1k—170,4)2”,
7=0

5.2. Multiplication 40

where for convenience, we agree r; _; = 0. Observing that by (5.2)

k—
¥ mod P(z) = Zrmxj,
—

—_

~

we get the following lemma.

Lemma 5.11. The reduction matriz R in (5.2) can be computed from the polynomial

P(z) by

ro;=-r;, J=0,...,k—1;
Tij = Ticlj—1 — PjTi—i k=1, t=1,..., k=2, j=0,...,k—1;

where r; _1 = 0.

We are now ready to write an explicit formula for the reduced product C'(z):

2k—2 k-1 k—2 k-1

C(z) = Z cia® mod P(x) =) da'+) o Zrmxj mod P(z)
s=0 s=0 i=0 =0
k-1

k—2
/ / 5
CS —I_ E :Ck+lrl75 Z .
=0

Or in matrix form, the desired result is

5=0

<

co 10 0 roo -+ Tk—20 :
5] 0 1 0 r0,1 s Tk—2,1 C;c—l

= /

k

Crp—1 0 0 -+ 1 rog—1 -+ Th—2k-1 :
Chr_g

The complexity of the above matrix multiplication is: k(k — 1) additions and mul-
tiplications (by a constant r; ;) in F,. Since the first step takes £? (general multi-
plications) and (k — 1)? additions in F,, the total computational complexity of this
multiplication algorithm in Fx is:

e 2k% — k multiplications in F,,

e 2k? — 3k + 1 additions in F,.

The Karatsuba—Ofman Algorithm

The complexity estimates for the two-step algorithm derived above can be made
much lower in practice. The first thing is to note that by a careful choice of the
field polynomial P(z) the reduction matrix R will be sparse [Paa96]. That is the
reason why we would like to perform the multiplication step with less than O(k?)
operations. This can be achieved by using an algorithm first described by Karatsuba

5.2. Multiplication 41

and Ofman [KO63]. The method is based on splitting the multiplicands to lower
their order. Towards this end, we assume both our our polynomials are of degree
less than k, where k = 2.

We begin with splitting the multiplicands as follows:

E_q E_q
2 2
k ; a_ k
A(z) =2 gyt E a;x' =22 Ay(x) + Ap(z).
1=0 =0
k 37! . i . k
B(z) =22 be 2" + bix' = 22 By(z) + Bo(z).
2
1=0 =0

Using this decomposition, we can express the product of A(z) and B(z) as
C(r) = Do) +25[Di(¢) = Do(x) = Dafa)] + * Da(a),
where

Do(z) = Ag(z)Bo(),
Di(z) = [Ao(z) + A1 (2)][Bo(z) + Bi(z)],
D2($) = Al ($)Bl ($)

So we have reduced the original multiplication to 3 multiplications and 4 summations
of polynomials of degree < k/2 — 1. Naturally, we may continue this way and split
next the polynomials Ag, A1, Ag+ A1 together with the corresponding parts of B(z).
This may further be continued until finally, the degree of polynomials to be multiplied
is 0. The algorithm takes ¢t = log k steps. By counting the operations involved, we
get an estimate for the computational complexity of this algorithm. For a detailed
proof, see [Paa96].

Theorem 5.12. Let A(z) and B(z) be two polynomials in Fy[z] having degrees less
than k. Then their product can be computed using the Karatsuba—Ofman algorithm
with

e the number of F,-multiplications #© = [k]'93.

e the number of F,-additions #& < 6[k]1°93 — 8[k] + 2.

Observing that log3 ~ 1.58, we see that this yields much better performance than
using the ordinary polynomial multiplication with O(k?) subfield operations.

Squaring in a Field of Characteristic 2

We conclude our discussion on multiplication in polynomial basis by observing that
squaring in a field of characteristic 2 can be done a little bit more efficiently than
multiplying an element by itself using the multiplication algorithms discussed above.
Let

a = a;0', a; € Fy,

5.2. Multiplication 42

where ¢ is a power of 2. Then squaring becomes a linear operation, and hence we
may write

k—1
a? = Za?@Zi, a; € IFy.
=0
This gives the square of a in the polynomial basis {1, 6, ..., 81} after multiplication

with the reduction matrix R.

5.2.2 Multiplication with Respect to a Normal Basis over I,

Let 3,32, 3%, .. .ﬁ2k_1 be a normal basis of Fyr over Fy. As already observed in
Example 5.4, squaring an element a = (ag,a1,...,ak—1) given in normal basis is
cyclic shifting, i.e., a> = (ag_1, ag, - .., ax_2). To find the product ¢ = (cq, ..., cx_1)
of a = (ag,...,ax—1) and b = (bg,...,bx_1), we write
k-1 N\ k-1 k—1k—1 ‘
2° 27 9i197
- (Z“’ﬂ) Db | =)) aibis
i=0 =0 i=0 j=0
We will next express elements ﬁ2i+2] in the normal basis,
‘ k-1
e =S
t=0

with /\() € Fy. Thus we have for the coordinates of our unknown,

k—1k-1

=% Mab;, t=01,... k1. (5.3)

i=0 j=0

We may write ¢; = ¢;(a,b), viewing ¢; as a bilinear mapping from the coordinate
spaces of @ and b to Fy. Because we are dealing with a normal basis, it follows that

ei(a,) = (7)o = (a Jo = cola).

Thus we may compute the coordinates ¢; of ¢ from equation (5.3) with ¢ = 0, by first
applying a t-fold cyclic shift to @ and b:

2k—t 2k—t 2k—t 2k—t 2k—t

b b

??‘
,_.

k—

,_.

A a,_|_tb]_|_t, t:0717...7k‘— 17 (54:)
J=0

-,
il
=}

where for convenience, subscripts are considered modulo k. Hence the product of a
and b with respect to the basis {3, 32, .. .,ﬁ2k_1} is determined by finding out the

matrix A = (A\{")) € (Fy)*xk,

l7]

2k1

The complezity of the normal basis {3, 32, .. } is defined to be the number
of nonzero entries in A. We denote this by Cg. It is clear that Cg < k?. A lower
bound 2k — 1 < Cg has been determined in [MOVW89]. This suggests the following
definition.

5.3. Inversion 43

Definition 5.13. A normal basis {#3, 3%, .. .,ﬁ2k_1} of Fyi over Fy is called optimal,
if Cg = 2k — 1.

There are two well-known constructions of optimal normal bases [MOVW89] by
Mullin et al. The next two theorems present these. For proofs, see for exam-

ple [MBG*93].

Theorem 5.14. Suppose k + 1 is a prime and 2 is a primitive element in the field
Ziy+1. Then the k non-unit (k4 1)th roots of unity form an optimal normal basis of
Fyr over .

Theorem 5.15. Let 2k 4+ 1 be a prime and assume that either

1. 21is primitive in Zogy1, or

2. 2k+1 =3 (mod 4) and 2 generates the set of quadratic residues in Zg41 (i.€.,
every nonzero element having a square root in Zok11 is a power of 2).

Let v be an element generating the set of (2k + 1)th roots of unity in Zogi1. Then
3=+~ generates an optimal normal basis of Fyr over Fy.

The basis corresponding to Theorem 5.14 is called a type I optimal normal basis, and
the optimal normal basis constructed according to Theorem 5.15 is called type II
S. Gao and H. Lenstra [GL92] have proved that all optimal bases of Fyx are indeed
either of type I or type II. Table 5.1 lists the values of 150 < k£ < 200 for which
there exists an optimal normal basis over Fyx [MBG™93]. The values marked with
QO indicate existence of type I optimal normal basis, otherwise the optimal normal
basis is of type II.

155 174 186
158 1780 | 189
1620 | 179 191
1720 | 1800 | 194
173 183 1960

Table 5.1: Values of 150 < k < 200 for which there exists an optimal
normal basis in For .

5.3 Inversion

5.3.1 Algorithms Using Exponentiation

To invert a nonzero element « in the finite field F«, one practical method is to use
the finiteness property of the field. Multiplying « by itself will eventually produce
1. So we just have to stop multiplying after the correct amount of iterations. More
rigorously, by Lemma A.36

k_
a? "t =1

5.3. Inversion 44

which immediately gives

_ k_
a l=a? 2,

Writing the exponent as powers of ¢ we get

k

k ¢ —1
—-2=-1 -1

q =17

=1+ (=D +g+a+- 44"
=q¢—2+(¢—1)(qg+ ¢+ +¢"),

S0
k—1

ol = @2 H (aq_l)qi .

=1

For the most important case, ¢ = 2, this implies

k—1 ‘

— 2

o T
=1

so inversion in Fyx can be done by O(k) squarings and multiplications in Fyx.

For the case of binary fields, ¢ = 2, Itoh and Tsujii [IT88] have presented a drastic
improvement to this algorithm. It is based on writing

_ k_ k—1_
ol = 22 = (a2 1)

We can continue splitting the exponent by writing

oy () R) e
9 (Q(k—2)/2 - 1)) (Q(k—2)/2 + 1)) +1, k even.

In the case k is odd, this yields

2
k—1 k—1)/2
2 -1 (2(k=1)/ —1)

2(k—1)/2_1

2

(k=1)/241

Thus, if we know « , we get a2 -1 by one multiplication and few repeated
squarings, assuming k is odd. Similarly, in the case of even k, prior knowledge of
a2t 2711 after two multiplications and some squarings. Continuing
this way, we get an efficient iteration.

Example 5.16. Let £ = 16. Now
25 1 =202"-1)(2"+ 1) + 1,
27— 1=2(2-1)(2°+1) +1,
2 -1=2024+1)+1.

gives «

So, we get a~! by computing
5 = 221+

y = ﬁ2(23+1)a

7
2(27+1)

9

d=r
52 =a~ .

9

This requires 6 multiplications and 15 squarings in Fyie.

5.3. Inversion 45

Using induction, one can prove the following result about the multiplicative com-
plexity of this method. For details, see [ABMV93].

Theorem 5.17. The number of multiplications required in computing a~' for o €
FS. by the Itoh—Tsujii algorithm is equal to

llog(k — 1)| + Hy(k — 1) — 1 = O(log k).

Here H,,(k — 1) stands for the Hamming weight of k — 1, the number of ones in the
binary representation of k — 1.

Note that the previous theorem does not include the count for the number of squar-
ings. If we are representing our field with respect to a normal basis over Fy, this is
justified, since squaring is a cyclic shift and can thus be regarded “free” (recall Ex-
ample 5.4). Using the polynomial basis, the Itoh—Tsujii algorithm does not look that
attractive. However, a recent result [GP98] shows that the Itoh—Tsujii algorithm can
be efficiently adopted to polynomial bases as well.

5.3.2 Euclidean Inversion

Another approach to inversion is to apply Euclid’s algorithm to polynomials over a
finite field. Assume the field F x is given in polynomial basis with an irreducible
field polynomial P(z) € F,[z] of degree k. As in Section 5.2, write the element to be
inverted as a polynomial

Alz) =Y a2’ a; €T,
1=0

We can formulate the problem of inverting A # 0 as follows: find a polynomial
B(z) € F,[z] with deg B < k such that

A(z)B(z) =1 (mod P(z)),
A(z)B(z)+ Q(x)P(z) =1

for some Q(z) € F,[z]. To solve B(z) from this equation, we apply an analogue of
Euclid’s algorithm from elementary number theory [Nic93], called the eztended Eu-
clid’s algorithm. The following description of this algorithm is taken from [WBV*96].
Denote by ¢(F) the leading coefficient of F.

1. initialize polynomials B «+ 1, '+ 0, F + A and G + P.

2. while deg F' # 0 do

(a) if deg F' < deg (7, then exchange F, G and exchange B, C.
(b) j « deg ' —deg GG, o ((F) /U(G).
(¢) F F—ax’G, B+ B - ax’C.

3. return B/((F).

5.4. Methods Exploiting Subfield Structure 46

In the above algorithm the relations F' = BA (mod P) and G = C'A (mod P) are
maintained. In each iteration the degree of the longer of F' and (7 is decreased.
In [WBV™'96] a modification of this method that yields better performance in some
cases was also presented. The modified version is called the almost inverse algorithm
and it is based on the work [SOOS95] of Schréppel et al.

5.4 Methods Exploiting Subfield Structure

5.4.1 Hybrid Multiplication

When implementing a model in practice, one has to deal with finite computational
resources — that is, limited memory and speed. To come up with an economically
feasible implementation, it is often very efficient to equip the model with some kind
of parameters that can be adjusted to find a setting that yields optimal performance.
Finite fields have one quite natural choice for this kind of parameter.

Definition 5.18. A finite field Fx is called composite, if k = nm for some prime p
and integers n,m > 1.

A composite field Fynm is clearly isomorphic to F,nym, so it is an m-dimensional
vector space over F,». To represent the elements of a composite field, one may
choose an irreducible polynomial P(z) € F,[z] of degree n and another irreducible
polynomial @Q(z) € Fpn[z] of degree m. Then elements of Fx can be viewed as
polynomials modulo Q(z),

—_

m—

A= Z a,'x",

1=

where a; € Fyn, i.e., a; are considered polynomials modulo P(z). Note that the
representation for the underlying subfield does not change anything in the polynomial
basis multiplication algorithms derived in Section 5.2, since there we only assumed
that subfield calculations can be carried out in some way. This open structure allows
one to choose a different method for subfield multiplication.

In software, a simple and efficient solution is to represent both fields with respect to
a polynomial basis and use table look-up for multiplication in the subfield Fy,», and
extend this to F,»m by applying some variant of the Karatsuba—Ofman algorithm in
the ring F» [2]. A detailed analysis of this approach is provided in [GP97]. Section 5.5
gives examples of hardware implementations of the hybrid multiplication.

5.4.2 Inversion Using Subfields

Analogously with the trace function defined in the Appendix A, we define another
important mapping from F x to F,.

Definition 5.19. Let o be an element of F x. The norm of a over F, is given by

k-1
N(a) = H o,
1=0

5.4. Methods Exploiting Subfield Structure 47

Since

we find out that
N(a) = aXise @' = qd"=1/a-1,
Thus,
(N(@)™' =a? " =1

for every o # 0, which implies that N(«) is always an element of the subfield F, of
F..
q

The norm function may by viewed as an operator that contracts F x to F, without
damaging the multiplicative structure. This can be used to reduce the inversion
operation to subfield, an idea originally found by Itoh and Tsujii [IT88]. For a
nonzero « € F x, write

a \ 7! N(a) M
-1 _ _ -1 _ -1 :
Thus a~! is obtained in four steps:

i

e Compute 3 = Hf;ll od .
e Compute aff = N(a).
e Invert N(a) € F,.
e Calculate SN(a)~t = a7l
We see from the above that inversion in F » can be reduced to F, by m multiplications

and m — 1 exponentiations to the ¢th power. Optimizing the exponentiation as in
Theorem 5.17, we get the following result [IT88].

Theorem 5.20. Let o €]F';k, where k = nm. Then a~' can be computed by per-
forming one inversion in Fyn, m — 1 qth power ezponentiations in ¥ r and

llog(m —1)] + Hy(m — 1)
multiplications in F .
The best performance of this algorithm is got by using a normal basis representation,
taking ¢th powers by cyclic shifting. A discussion of adapting this method also to

fields given by a polynomial basis is given in [GP97]. When this approach is taken,
the subfield inversion can be done for example by table look-ups.

5.5. Some Hardware Implementations for Fields of Characteristic 2 48

5.5 Some Hardware Implementations for Fields of Char-
acteristic 2

5.5.1 The Mastrovito Bit-Parallel Multiplier

F,.-multipliers can be divided in two classes, bit-serial and bit-parallel. In a bit-serial
multiplier, the input is fed into the multiplier one bit at a time, and the time required
to compute the output is O(k), measured with respect to the number of clock cycles
of the device. A bit-parallel multiplier takes all its input simultaneously and the
corresponding result comes out in time O(1), which means that its computation
time remains constant as k as grows (the size of the device grows instead). We shall
next give an overview of a bit-parallel multiplier architecture of Mastrovito [Mas91].

Let a,b € Fyr be given in polynomial basis generated by the field polynomial

k—1
P(z)y=a%+) pia', pi€Ty,
=0
k—1 ' k—1 '
a=> ait’, b=> b#', a;b €T,
where P(#) = 0. As before, denote ¢ = (¢_1,...,¢9) = ab. Viewing Fyr as a vector
space spanned by {1,4,...,6* '}, we may regard multiplication by «a as a linear map

on (Fy)*. Let Z = (2; ;) be its matrix representation, i.e.,

co 20,0 20,1ttt 20k=1 bo
c1 21,0 2,0t Zk=1 by (5.5)
Ch—1 k=10 Zk=1,1 °* Zk—1k-1 br—1

Clearly, the entries of the product matrix Z are determined by a and P(z). Define

u(n) = {1, n>0,

0, n<0.

A lengthy but straightforward calculation [Mas91] gives

zio=a;, 1=0,....,k—1, (5.6)
7—1
zm‘:u(i—j)ai_]‘—l—er_l_wak_l_s, 1=0,...,k=1, j=1,...,k—1,
s=0
(5.7)

where r; ; are the entries of the reduction matrix modulo P(z), computed in Sec-
tion 5.2.1.

We shall next present an example of a multiplier over Fy4, taken from [Mas91]. For
the irreducible polynomial P(z) = 2% 4 2 + 1 over Fy, the reduction matrix is given

by

o = =
=
—_— o O

5.5. Some Hardware Implementations for Fields of Characteristic 2 49

Let a = (as, as, a1, ap) be given in the polynomial basis generated by P(z). Then
the product matrix corresponding to a and P(z) will be by equation (5.6),

ap as a2 ai

a ap + a a9+ a a1+ a
7 = Z(a,P(x)) — 1 0 3 2 3 1 2

as ay ag+az az + ag

as a2 ay ag + ag

A hardware architecture corresponding to this matrix is given in Figure 5.1. Note
that multiplication in Fy corresponds to the logical AND operation, while Fy-addition
may be considered as the logical XOR (exclusive or).

by b1 b2 b3
L 1

D anD | -)
® xon IS 2
D
¢>~~DJ .
. *D
sz ! 3 D
+ 0~~Dj .
oA MEDEN
L ® D
D~
‘FW »
o~

Figure 5.1: A Mastrovito multiplier over Fqs.

From the figure we see that this multiplier consists of 16 AND gates and 15 XOR
gates. This count is called the space complezity of the multiplier. From equation (5.5)

5.5. Some Hardware Implementations for Fields of Characteristic 2 50

we see that the number of Fy-multiplications required is always k2. Let us denote by
C(k) the space complexity of a hardware device. For the Fy,-multiplier, it has been
proved in [Mas91] that

2% — k41 < C(k) < 3k* — 3k + 1,
that is, C(k) = O(k?). If the field polynomial is a trinomial of the form
P(z) :avk—l—av—l—l7

then the exact space complexity is C(k) = 2k? — 1. Some fields for which this kind
of irreducible trinomials exists are listed in [LN97].

Note that the Mastrovito multiplier architecture can be easily extended to composite
fields. That is, the above multiplication scheme works just as well when the subfield
F, is replaced by some other subfield Fon of Fyr, where n divides k. For example,
let Fy4 be given as above by the field polynomial

P(z) :av‘l—l—ac—l—l7
and let w be a root of P(z) in Fy«. In fact, w is a generator of Fy4, which can be

verified by directly computing '’ for i = 1,...,15. Now the polynomial
Q) =y* +y+"

is irreducible over F,: [Paa96]. (Here for convenience, we have represented the co-
efficients of Q(y) as powers of the generator w.) Hence we have a representation of
Fys by affine polynomials over Fos modulo Q(z). To find ¢ = (¢1,¢p) = ab, with
a = (a1, a9),b= (b1,bo) € Fys, write in Fpu[y]/Q(y):
A(y)B(y) = (ap + a12) + (bo + 12)
= apbo + (a1bo + agb1)z + a1by 2
= apbo + w'a1by + [agho + aobr + arbg)z.

ci\ _ f(ao+ar ar) (b
Cp o w14a1 agp bo ’

which can be implemented using an architecture similar to that of Figure 5.1.

This gives us

5.5.2 Two Normal Basis Bit-Serial Multipliers

Let @ = (ag,...,ax—1) and b = (bg,...,bg—1) € For be given in normal basis
{ﬁ,ﬁ2,...,ﬁ2k_l} of Fyr over Fy. Then the product ¢ = (cg,...,ck—1) = ab is
given by

k—1k—1
Ct:ZZAg?j)aH'tb]“Ft? t:0717...7k‘— 17
i=0 j=0
where /\on) € Fy are as in equation (5.4).

We will now describe two bit-serial hardware architectures for implementing this
multiplication algorithm [MO83, AMOV91]. The following example from [AMOV91]
will serve as our prototype field.

5.5. Some Hardware Implementations for Fields of Characteristic 2 51

Example 5.21. The polynomial P(z) = 2° 4+ 2? 4 1 is irreducible over Fy. Let a
be a root of P(z) in Fys, and let 3 = a3. Then {83, 3%, 34, 3%, 316} is a normal basis
of Fys over Fy [AMOV91]. Performing the required calculations, using the identity
ad = a? + 1, we find

>

I
el ==
—_ -0 O O
O = O O =
— O = = =
— = O = =

so the complexity Cg of this normal basis equals 15.

Massey and Omura [MO83| suggested the use a linear feedback shift register to
implement the normal basis multiplication. A linear feedback shift register of length
k is a register that stores k£ values in its memory locations and performs a cyclic shift
(possibly combined with some logical operation) to these values every clock cycle.
If each of the & memory locations contains n bits, we say that the linear feedback
shift register has width n. Let us denote by f the function that calculates the first
coordinate ¢y of ¢ = ab. For the matrix A of Example 5.21, we have

f(a7 b) = (6107 ai, ag, as, a4)A(b07 b17 b27 b37 b4)T
= ag(bg + b3 + bs) + ay (b3 + ba) + az(bo + b3)
+ az(bo + b1 + by + bs) + aq(bo + by + bs + bs).

The computation of f(a,b) can be implemented by a similar circuit as that in Fig-
ure 5.1. The idea of Massey and Omura was to use this circuit in connection with
two linear feedback shift registers to compute the coordinates of ¢ [MO83]. This is
illustrated in Figure 5.2. In the beginning the two shift registers are loaded with

oo = =l =03 H by |

N Ct
f-circuit I

g =i H———={a ——={as ar

Figure 5.2: The Massey—-Omura bit-serial multiplier in Fys .

(ag, ai,as, as, aq) and (bg, by, be, bs, by), respectively. During the first clock cycle, the
circuit for f calculates and outputs cg. In the beginning of the second clock cycle, the
shift registers contain (a4, ag, a1, az, ag) and (b4, bo, b1, be, b3), and thus the f-circuit
will output c4. Proceeding this way, all the coordinates of ¢ are produced in 5 clock
cycles.

5.5. Some Hardware Implementations for Fields of Characteristic 2 52

The Massey—Omura multiplier is easy to implement when the field size is small.
However, taking k larger that 150, the f-circuit becomes very complex, due to its
irregular nature. To address this problem, Agnew, Mullin, Onyszchuk and Van-
stone [AMOV91] suggested another way to implement the normal basis multipli-
cation. They use three linear feedback shift registers, where the lowermost and
uppermost registers contain the coordinates of ¢ and b, respectively, and the the one
in the middle will hold the coordinates of ¢ in the end of the computation. This way
they get a regular structure — one that consists of several identical blocks. This kind
of regularity makes the architecture scalable to (cryptographically interesting) fields
Fy. with & > 150. A detailed analysis and description of the suggested architecture
is given in [AMOV91]. For our prototype case, Example 5.21, the corresponding cir-
cuit is represented in Figure 5.3. The shift register in the middle is initialized with
zeros, and the other registers are loaded with the coordinates of ¢ and b, as with the
Massey—Omura multiplier. After k& = 5 clock cycles, the shift register in the middle
will contain the coordinates of ¢. The reader may verify the correct functionality of
the circuit as an exercise.

={bg =l F——=1bs I ba |

N\ \?;j \é? Q&?j VY ¢
[[

o H——={ar H——={ar H——={as]

Figure 5.8: A bit-serial multiplier in Fys.

5.5.3 A Hybrid Multiplier

The bit-parallel multiplier for Fyr presented in Section 5.5.1 has space complexity
O(k?). This means that these kind of multipliers are not applicable for fields Fy. with
k > 150, which are used in cryptography. On the other hand, bit-serial multipliers

5.5. Some Hardware Implementations for Fields of Characteristic 2 53

have O(k) time complexity, which is undesirable in some applications. We will now
describe a hybrid multiplication architecture for composite fields F,x, £ = nm, which
is capable of exploring the time—space trade-off in a flexible manner. This original
idea of Mastrovito [Mas91] has been further developed and analyzed by Paar et al.
in [PSRI7].

Let Fon be given by the field polynomial
n—1
P(z) =a" + Zpi$i7 pi € Fo,
=0
and Q(y) be an irreducible polynomial over Fyn of degree m,
n—1
Q) =y +>_aqr', g € Fym.
=0

Then we have a representation for the composite field For, k& = nm, by polynomi-
als in Fyn[y] modulo Q(y), with degree less than m. Operating over the field Fgn,
we may multiply polynomials modulo Q(y) using a linear feedback shift register of
length m and width n according to Figure 5.4. The circuit is initialized by load-

ag ay ay [~ 7 am—1

bo by bm—2 bm—1
Co (& I Cm—2 + Cm—1
40 q dm—2 Im—1

Figure 5.4: A hybrid multiplier in Fonm .

ing the values bg,...,bn_1 and qg, ..., ¢n—1 into their corresponding registers and
resetting the memory locations of the shift register in the middle to zero. The com-
putation starts with feeding a,,_1 to the circuit. All the lines in the figure are n
bits wide, and all computation is carried out in Fyn (for example, the architecture
described in Section 5.5.1 can be used for Fyn-multiplication). After m clock cy-
cles, the linear feedback shift register contains the values ¢, ..., ¢,,,—1. Note that if
n = 1, the structure degenerates into one of the classical bit-serial architectures for
Fym-multiplication, which have been widely used in public key cryptosystems.

To compare this hybrid structure with the classical bit-serial case (n = 1), we may use
Figure 5.4 to see the space complexity of the bit-serial multiplier to be Cps(k) = 3k.
The corresponding time complexity is 7ps(k) = k. To get an estimate for the hy-
brid architecture, we assume that the space complexity of the subfield multiplier is
2n? — 1 [Mas91]. Optimizing the hybrid structure by choosing suitable field poly-
nomials [PSR97], we get for the total space complexity, Cpyp(k) = (2n 4+ 1 — 1/n)k,

5.5. Some Hardware Implementations for Fields of Characteristic 2 54

and for the corresponding time complexity, Thy(k) = k/n. For example,this means
Chyp ~ 16Cps and Thpyp ~ Tps/8 with n = 8. Hence, by choosing a suitable n, one
may exploit the time—space trade-off paradigm in a very flexible way.

Chapter 6

Implementing Elliptic Curve
Cryptosystems

6.1 General Aspects

When implementing a cryptosystem, different types of cryptographic techniques can
be categorized abstractly as follows [IEE98]:

e Protocols are sequences of operations performed by multiple parties to achieve
some security goal. They may be used to develop secure applications if imple-
mented correctly.

e Schemes are building blocks for protocols. They combine cryptographic prim-
itives with some additional techniques, such as message encoding algorithms
and hash functions to provide security in the complexity-theoretic sense.

e Primitives are the basic mathematical operations from the cryptographical
point of view. The signature generation and verification procedures (see Sec-
tion 2.4) implemented using elliptic curve groups are examples of primitives.

Developing public key cryptosystems involves many (nontrivial) decisions, such as
choosing a public key infrastructure, i.e., deciding how public keys are distributed
and agreed. However, since these are vast subjects as themselves and thus beyond
the scope of this thesis, we’ll restrict our attention only on the implementation of
primitives.

Primitives are implemented using algorithms. In the context of elliptic curves, we
may consider two classes:
1. Low-level algorithms are used to implement the arithmetical operations in the

finite field.

2. High-level algorithms use finite field algorithms to implement the group oper-
ation on the elliptic curve and to generate new elliptic curve groups.

55

6.2. Group Generation 56

Implementations of algorithms for finite fields were already discussed in Chapter 5.
In the next sections we represent some efficient implementations of high-level algo-
rithms.

Another issue is to choose the type of the field on which our elliptic curves will be
treated. Note that, once the underlying field is fixed, we still have a great variety
of abelian groups to choose from for our cryptosystem. Practically there are two
choices, determined by the characteristic of the field. One choice is to use a field F,,,
where p is a prime of size ~ 10%0. Then the field arithmetic will reduce to integer
arithmetic modulo p. Another feasible alternative is to use a field of type F,m, with
p a small prime. Then the choice p = 2 appears to be the most attractive one, since
then the field elements can be represented by m-bit strings. Further, adding two
elements in Fom can be done bitwise, which is very efficient in practice. Also, there
exist many efficient hardware implementations for arithmetic in Fom, as was seen in
Chapter 5. For these reasons, we will focus on the binary non-supersingular elliptic
curves in what follows.

6.2 Group Generation

Once the field is fixed, we need an elliptic curve defined on it, and a generator point
T € E(F,). It is preferable to choose a generator with prime order r such that r?
won’t divide #FE(F;). Then we see using Theorem 3.18 that either E[r] ~ Z, (if
ged(r,q) > 1), or E[r] ~ Z, & Z, (the case ged(r,¢) = 1). In the latter case, our
condition guarantees that F|[r] is not a subgroup of I/(F,). From these observations
we conclude that in both cases we have F[r]N E(F,) = (T). Moreover, every element
in (T') except O will have order r. Since (T) is a subgroup of F/(F,), and so r divides
#E(F,), we need to construct a curve whose order is divisible by the large prime r.

Given an elliptic curve F/F, with Weierstrass equation
v 4+ ey =a>+az’+b, a,beFom, b#£0, (6.1)

how do we find out its order #F(F,)? One simple way is to first fix # 0 and look
for solutions y to the above equation. As Lemma 3.23 guarantees, equation (6.1) has
two solutions y € Fym, if and only if

Tr(z +a+ x_zb) =0,

and no solutions otherwise. Thus we get the total number of points in F/(F,) (taking
points O and (0, v/b) into account) as

#EWpn) =2+ 3 (14 (- Tletar™)
x€Fm
=q+1+ (_1)Tr(a) Z (_1)Tr(x—|—x_2b)‘
z€F S,

However, since the above sum goes through 2™ — 1 elements, this simple algorithm is
exponential in m and hence not feasible when dealing with large fields. To construct
an elliptic curve with almost prime order over a large field, there are in principle
three approaches to choose from [IEE9S]:

6.2. Group Generation 57

1. If ¢ = 2™, where m is divisible by a small integer d, then select a curve over Fya
and compute its order by the above procedure. Then consider the extension of
this curve over Fym and use Theorem 3.14 to find #E (Fom).

2. Fix an a priori suitable order and construct a curve of that order.

3. Select an elliptic curve at random, and use a sophisticated algorithm to com-
pute #F(F,). Repeat this process until an appropriate order is found.

The first method can be easily implemented using a Lucas sequence, see [IEE98].
Constructing a curve according to the second alternative is not that simple. One
way to accomplish this is to use complez multiplication [Mor91, LZ94]. It is based
on constructing elliptic curves whose orders share a certain number theoretic prop-
erty. A description how complex multiplication can be implemented is also available

in [TEE98].

The third alternative is the most difficult one to implement efficiently in practice. It
is based on a polynomial-time algorithm invented in 1985 by R. Schoof [Sch85]. In
its original form it was very slow, having running time O(log8 q). Recently, many
improvements and modifications have been made [Ler97], resulting in more feasible
running times O(log6 q). These techniques use deep methods from algebraic geome-
try, e.g., computation of isogenies on elliptic curves [Sil86].

From the implementation point of view, the first alternative looks most attractive in
its simplicity. However, that method restricts the choice of the parameters a, b to the
subfield Fya of Fym. This means that elliptic curves generated using Lucas sequences
share a special property, which might make them vulnerable to a cryptographic
attack. Same kind of observations hold for complex multiplication methods. Thus,
to avoid all potential risks of the described kind, the most secure choice of curve
generation algorithm seems to be the most general one.

When we have a curve with order #F(F,) = vr, with r a large prime, this prime
should still be checked to satisfy the MOV condition on Page 31. If this check is
passed, we then proceed to find a point T having order r:

1. Generate a random point P € FE(F,) \ {O}. (This is easy with help of
Lemma 3.23, see [IEE98].)

2. Set T+ vP.

3. If T = O go back to Step 1.

4. Qutput T.

The above procedure works, since r7T' = (vr) P = O, which implies that the order of
T divides r. As r is prime and T # O, the order of the point T is r.

6.3. Group Operation 58

6.3 Group Operation

6.3.1 Adding and Doubling Points

Let F be a non-supersingular elliptic curve over Fym, given by equation
y 4+ ey =234+ az? +b, a,beFom, b#0,

with P = (z1,y1) and Q = (x2,y2) being two points in F(Fym) \ {O}. For conve-
nience, we rewrite the addition formulae (3.15) — (3.18) derived in Section 3.4. For
point addition with P #) we have P + Q = (23, y3), where

2
—I_ —I_
3 (" Y2) " Y2

+ 214+ 22+ a,
AT D) X1+ 29 ! :

ity
Y3 = (T—I—ﬂcz) (1 +23) + 23+ Y1

Doubling the point is done by 2P = (23, y3), with

r3 = x% + -
Ty
(6.3)
ys = 27 + (m—l—i—l) 23+ 73.
1

Now we can count the number of field operations required to perform these group
operations. Since addition of elements in Fym takes very short time compared to
multiplication and inversion, we count only the latter two. From the above equations
we see that the point addition takes 2 multiplications, 1 squaring and 1 inversion
in the field Fym. Similarly, doubling can be accomplished by 3 multiplications, 2
squarings and 1 inversion. In Chapter b we saw that inverting Fom-elements is much
more costly than multiplication. So it seems that field inversion becomes a bottleneck
when performing operations in the group F(Fam).

We can avoid the costly inversion present in equations (6.2) and (6.3) by resorting
to projective coordinates [Men93]. Assume P # @) are two nonzero rational points
on a non-supersingular curve F//Fym given in projective coordinates, P = (21:y;:
z1),Q = (x2:y2:22); recall Definition 3.2 in Section 3.1. To compute the sum
R = P+ Q, we write P = (z1/z1:y1/z1:1) and Q = (x2/2z3:y2/22:1). Thus
(x1/z1,y1/71) and (2z2/z2,y2/22) correspond to the affine coordinates of P and @,
respectively. We may then apply formula (6.2) to compute R = (2%, y3). We get

, B B A
T3 = — —
A2 A 2129

B
Y3 = I (x1/21 4+ x3) + 234+ y1 /21,
where A = x129 + v921 and B = y129 + y221.

Viewing (25, y5) again in projective coordinates, we have R = (2} :y%:25) with
zh = 1. Now we take advantage of the extra “space” we have available in the projective
plane P?(Fym). That is, we choose a point (3, y3, z3) from (Fam)3 to represent the

6.3. Group Operation 59

line R C (Fym)? such that the denominators of x4 and y4 will be cancelled out.
Examining the above equations, we see that letting 23 = 212943 is a good choice.
Then a simple calculation yields

w3 = 2129A32% = AD,
y3 = 2122A%5 = CD + A*(y129A + 2122 B),
Z3 = 2’12’2143,

where C' = A+ B and D = z;20BC + A?(A + z129a). A similar calculation for
computing 2P = (z3:y3:23) can easily be done, resulting in

$3:E7P’7
y3 =21 E+ F(af +yi121 + F),
Z3ZE737

with £ = @1z, and F = 2 + 2{b. This way, we can perform both addition and
doubling in the group F'(Fym) without having to deal with inverting in Fym. This
looks a little bit too easy and in fact it is. Namely, to check if two points given in
projective coordinates are equal means checking if they are scalar multiples of each
other, which obviously requires inversion in Fom .

However, in practice we only need to compute kT for T' = (z7,yr) € E(Fym). Then
we may proceed by considering the projective representation of 7', T' = (z7:yr:1),
and computing k7T by repeatedly adding and doubling T in projective coordinates
using some method of Section 6.3.2. Then we transform the result (zx7:yrr:2k7)
back to affine representation by inverting zpr. This method thus requires one in-
version in Fym for the whole procedure of computing k7. An additional advantage

is that we may assume zo = 1 by suitably choosing the order of summation, see
Section 6.3.2.

The cost of avoiding the inverse operation is paid in terms of increased number of
field multiplications. By the above formulas, computing P 4 () (assuming z; = 1)
needs 13 multiplications and 1 squaring in Fym, and for doubling the point P, 7
multiplications and 5 squarings are enough.

6.3.2 Scalar Multiplication
Binary Algorithm

The fundamental mathematical operation used in elliptic curve cryptosystems is
scalar multiplication, i.e., computing k7T for T € E(F,) and 0 < k < r (the word
ezponentiation from the terminology of multiplicative groups is also often used). As
already seen in Section 4.1, this can be done by writing & in binary form as

t—1
k=Y k2, ki€{0,1},
=0
and performing the following steps:

1. Set R« T.

6.3. Group Operation 60

2. If kg =1,set S« T,else S «+ O
3. Fori=1tot—1do

(a) set R «+ 2R.
(b) if ky =1, set S+ S+ R.

4. Qutput S.

Hence this method requires ¢t — 1 = | k| — 1 doublings and H,,(k) — k¢ additions. On
average, this method requires 3r/2 group operations. Many modifications and exten-
sions to this method have been invented. One of them is the 2™ -ary method [Knu81],
where k is represented with respect to the base b = 2™. It works in principle the
same way as the binary algorithm, except that precomputation of the values T; = iT
fori=1,...,b—11is required. The 2"-ary method has further refinements, reducing
the required amount of precomputation [MvOV97]. Guajardo [Gua97] suggested a
speed-up to the 2™-ary method by working out direct formulas for 47,87, ..., 2™~ !T,
thus reducing the required amount of field inversions when using affine coordinates.
Other modifications to the binary algorithm utilizing precomputation include the
sliding window method, see [Koc95].

Addition—Subtraction Chains

The algorithms described above were originally developed for modular integer arith-
metic [Knu81]. After all, there appears to be no difference in elliptic curve scalar
multiplication and exponentiating integers using multiplication modulo n as the el-
ementary operation. However, there is one exception. While computing inverses of
integers modulo n is much harder than the direct multiplication, group inverses of
elliptic curve points are available practically at no cost. This suggests a new kind of
approach to implement exponentiation on an elliptic curve.

One way to formally discuss different exponentiation methods is to introduce the
following concept.

Definition 6.1. An addition chain of length r for a positive integer k is an (r + 1)-
tuple (ko, ..., k) of positive integers such that kg = 1, k, = k and forevery 1 <i <r
there exist integers a(¢), b(i) such that

0 <a(i),b(i) <i, ki = ka@) + k) (6.4)

Thus, given an addition chain for & of length r, we may compute kT with r additions.
Example 6.2. For k = 15, we may write kg = 1,k = kg + ko = 2 and
15 =847=(444) + (4 +3) = [(kr + k1) + (k1 + k)] + [(k1 + k1) + (k1 + ko)]-

Hence we see that (1,2,3,4,7,8,15) is an addition chain of length 6 for 15. This is in
accordance with the count we got for the binary algorithm, |log k| -1+ H,, (k) —ko =
6.

However, on elliptic curves it looks more efficient to compute 157 = 24T — T. This
is the idea of an addition—subtraction chain.

6.4. Existing Implementations 61

Definition 6.3. An addition subtraction chain for a positive integer k is defined the
same way as in Definition 6.1, replacing condition (6.4) with

0 < a(i),b(i) <id, ki =Ekyq) £ ki)

Now, (ko,...,ks5) = (1,2,4,8,16,15) is an addition—subtraction chain for k = 15,
so 5 operations is enough for finding out 157. This idea, applied to elliptic curves
by F. Morain can be described as follows: replace k with & = ki — k_ so that
computing k4T and k_T requires less operations than the evaluation of kT. Morain
describes two algorithms for doing this, yielding average speed-ups of 8.33 % and
11.11 % respectively, compared to the ordinary binary algorithm [MO90]. Further
improvements to these methods have been suggested recently; they are summarized

in [Gor9§].

6.4 Existing Implementations

6.4.1 Implementations in Software

There exist four software implementations [SOOS95, Bea96, WBV 96, Gua97] of
cryptosystems using non-supersingular elliptic curves over Fom with m > 150 re-
ported in the academic literature known by the author. We proceed to give a brief
discussion on the implementation of their arithmetical operations.

The earliest implementation of a cryptosystem using non-supersingular elliptic curves
over Fym with m > 150, was made by Schroppel et al. in 1995 [SOOS95]. They used
a polynomial basis over the field Fyiss with P(z) = 2155 4 262 4 1 as the field
polynomial. The field multiplication was implemented using the two-step algorithm
presented in Section 5.2.1. For squaring, a linear map described also in Section 5.2.1
was used. Inversion was accomplished by the almost inverse algorithm [SOOS95].
The elliptic curve group operations were implemented using affine coordinates and
a version of the 2™-ary method, see Page 59. The performance of the system was
optimized by letting @ = 0 in the defining equation (6.1) of the curve. This way the
scalar multiplication in F/(Fyis5) took 7.8 ms on a 175-MHz DEC Alpha 3000

In 1996, two implementations for elliptic curve arithmetic over Fyi7¢e were indepen-
dently developed by Beauregard [Bea96] and De Win et al. [WBV196]. Both im-
plementations use a composite field architecture, representing the field elements as
polynomials over Fyie modulo a field polynomial of degree 11. In both works, the
field multiplication and squaring were done similarly as in [SOOS95], using table
look-ups to perform the computations in the subfield. In addition, both of the im-
plementations used the binary method in affine coordinates for the elliptic curve
scalar multiplication. The only considerable difference between the two implemen-
tations was the computation of inverses. In [WBV196], extended Euclidean and
almost inverse algorithms (see Page 45) were used, while in [Bea96], the algorithm
of Section 5.3.1 was optimized for the polynomial basis representation to accomplish
the task. The corresponding time estimates for performing the scalar multiplication
are 72 ms for [WBV196] (on a 133-MHz Pentium), and 123 ms for [Bea96] (175-MHz
DEC Alpha 3000).

6.4. Existing Implementations 62

In 1997, an implementation based on the architecture of [Bea96] was presented
in [Gua97], introducing three improvements to the previous work. First, the or-
dinary polynomial multiplication was replaced by the Karatsuba—Ofman algorithm
described in Section 5.2.1. For the field inversion, the subfield reduction in Sec-
tion 5.4.2 was utilized. In addition, the scalar multiplication was made efficient by
using the 2™-ary method with direct formulae for computing 47,87, ... [Gua97].
Using a DEC Alpha 3000, the scalar multiplication took 68 ms. The timing results
of these implementations are summarized in Table 6.1. Note that these reported
timings are not directly comparable (since for example in [WBV196], a different
processor was used in computation).

implementation ‘ group ‘ timing
[SOOS95] FE(Fgi55) with e =0 | 7.8 ms
[Bea96] E(Fai7e) 123 ms
[WBVT96] E(Fyi7e) 72 ms
[Gua97] E(Fgi7e) 68 ms

Table 6.1: Time required to perform elliptic curve scalar multiplication.

6.4.2 Two Hardware Architectures

There have been very few hardware implementations of elliptic curves reported in
the literature. In this section, we’ll discuss two of them.

A Fs155-Coprocessor for Elliptic Curve Arithmetic

In [ABMV93], a VLSI (very large scale integrated circuit) implementation of an arith-
metic processor for the field Fyis5 is described, and its suitability to perform elliptic
curve arithmetic is discussed. The goal of the design was to achieve good perfor-
mance for elliptic curve scalar multiplication under strict area requirements in order

to allow the coprocessor to be integrated on a smart card. Similar considerations
were presented in [MV90, MV93].

The field is represented using an optimal normal basis over Fy155 and multiplication
is implemented as in Section 5.5.2. Multiplication requires three registers to store
the multiplicands and the result. Every register consists of five independent 32-bit
storage blocks, so every block contains one extra bit that is not used. Since the
multiplication of elements needs lot of interconnection of blocks, 32-bit wide data
paths are used. Inversion is done by a variant of the Itoh—Tsujii algorithm. The
implementation runs at 40 MHz, which means a timing of 3.9 us for multiplication
in Fyis5. The architecture consists of 11 000 gates, which is roughly 15 % of the area
of currently available smart card chips.

In [ABMV93], the authors further discuss how elliptic curve scalar multiplication
could be done using this coprocessor. They suggest two alternatives. One is to use a
supersingular curve over Fys10, where doubling on the curve can be done without field
inversion. The field Fys10 can be viewed as an extension of Fyis5, and so arithmetic
in Fys10 is easily implemented using the Fyis5-processor. For these elliptic curves, a

6.4. Existing Implementations 63

throughput rate of 444 kilobits per second was estimated. (Note that in this case,
supersingular curves can be used for secure public key schemes, since now a MOV
reduction leads us to a DLP in a finite field of size ~ 210%0) If shorter key lengths
are desired, another alternative is to use a non-supersingular elliptic curve over Fyiss
and projective coordinates yielding an estimated throughput rate of 60 kbits/s (the
timing for a single scalar multiplication is roughly 5.2 ms) using the coprocessor
architecture. This VLSI design could be used to implement an elliptic curve crypto
engine on a smart card by using the smart card’s microprocessor to control the
COProcessor.

An Elliptic Curve Cryptosystem on Reconfigurable Hardware

In a recent work by M. Rosner [Ros98], an architecture to perform elliptic curve
scalar multiplication on reconfigurable hardware was developed. The system was
based on the use of field programmable gate arrays (FPGAs). This choice allows the
user of this crypto engine to change all parameters of the cryptosystems, including
those determining the underlying field and its representation. Thus FPGAs combine
the flexibility of software solutions with the speed of hardware circuits.

The field arithmetic in [Ros98] was constructed using composite fields of type Fosm,
considering finite fields with Fys as a subfield. For the subfield arithmetic, two alter-
native approaches were suggested, a Mastrovito multiplier for Fys and a composite
type multiplier using Fy4 as a subfield. Both of which were described in Section 5.5.1.
These parallel subfield multipliers were used as building blocks to implement the hy-
brid multiplier of Section 5.5.3. For squaring, no optimizations were used.

The group operations were done using projective coordinates and binary exponen-
tiation on a non-supersingular elliptic curve. Using automatic synthesis tools an
estimate of 4.5 ms for scalar multiplication in F/(Fyies) (with 38 kbits/s throughput
rate) was made. The area estimate for the corresponding architecture was roughly
50 000 gates, which won’t fit to the area constraints for current smart cards.

Chapter 7

Discussion

7.1 Conclusions

In this thesis it was shown that the use of elliptic curves in cryptography provides
a noteworthy alternative to traditional public key cryptosystems. This goal was
fulfilled in three steps:

e A mathematical frame of reference for discussing the security and implementa-
tion aspects of elliptic curve cryptosystems was constructed by giving a com-
prehensive introduction to finite field arithmetic and elliptic curves over finite

fields.

e The latest state-of-the-art algorithms for solving the elliptic curve discrete log-
arithm problem were reviewed. This way, affirmative evidence was found for
believing that elliptic curves, when carefully chosen, may provide strong secu-
rity with relatively small key lengths.

e Several different approaches for implementing arithmetic of elliptic curves were
compared. Reviewing the latest software and hardware implementations, it
was seen that elliptic curve cryptosystems can be efficiently implemented in
practice.

Implementing elliptic curves involves many choices. The most fundamental decision
concerns the field characteristic, which determines the exact form of the equation
of the curve. If special hardware equipment is used for the field arithmetic, then
characteristic 2 appears to be the natural choice due to the fact that the existing
hardware technology is almost completely based on two-value logic. In software,
where general purpose microprocessors often have good support for modular integer
arithmetic, using fields of large characteristic might be a feasible solution. Many
recent software implementations are made for elliptic curves over fields F,,, where p
is a large prime. An interesting alternative could be trying to implement arithmetic
in fields of characteristic 127 or 23! — 1; two primes that could neatly fit into existing
microprocessor technology.

If a small characteristic for the field is chosen, several feasible alternatives for rep-
resenting the field elements are available. The most dominant choice is to decide

64

7.2. Further Research 65

whether the ground field is represented with respect to a polynomial or a normal ba-
sis. Multiplication in polynomial basis can be done very efficiently, e.g., by using the
Karatsuba—Ofman algorithm. However, this requires storage of temporary results,
i.e., it is most efficiently implementable in software. Using the extended Euclidean
algorithm, inversion in polynomial basis can also be performed very quickly. This
also requires a general purpose microprocessor and software to control it.

In hardware, it was seen that the use of an optimal normal basis yields the best
performance for field multiplication. However, using a normal basis means that ef-
ficient algorithms based on polynomial arithmetic, such as the extended Euclidean
algorithm for inversion, are not available. A new method of using a so-called palin-
dromic representation suggested by Blake et al. can combine the good features of
both the polynomial and normal basis representations. In [BRS98], they established
an analogy between a special set of polynomials modulo 22*~' —1 and type II optimal
normal bases over Fy.. This representation could allow great flexibility for mixed
software/hardware implementations of elliptic curve arithmetic.

Besides the speed of the implementation, space requirement aspects deserve atten-
tion. Since the fields used in cryptography are very large, the required amount of
memory and registers is a crucial factor in practice. From this point of view, the
use of three coordinates for representing a one-dimensional curve in the projective
plane seems a waste of memory. For transmitting an elliptic curve point, it is actu-
ally enough to transfer just the z-coordinate with one extra bit, which can be used
to recover the correct y-coordinate in question [Ser98]. If space consumption is the
most important factor to be optimized, then the most feasible solution is to use bit-
serial hardware circuits for field arithmetic. Respectively, in the opposite situation
with practically unlimited memory resources, a software implementation using a lot
of precomputation for elliptic curve points seems to be the most efficient solution.
Hybrid architectures exploiting the subfield structure of composite fields may offer
a feasible alternative between the two extreme approaches in some environments.

7.2 Further Research

During the research that was carried out in preparing this thesis, many interesting
topics about implementing elliptic curve arithmetic that came up had to be left out
in order to keep the size of the presentation within reasonable bounds. Some of these
ideas which could make interesting subjects for further study are listed below:

e Utilizing duality in finite fields could yield more efficient realizations for field
operations. Dual bases over finite fields have been intensively studied from the
pure mathematical point of view. However, reported applications using duality
in fields of cryptographically interesting size seem to be rare.

e Using two (or even three) coordinates for performing computations on a one-
dimensional elliptic curve seems inefficient. Trying to find better coordinate
systems in the projective plane specially suitable for elliptic curves might result
in improved space—time performance.

o Investigating opportunities for combining the advantages of both the polyno-
mial and optimal normal bases as in [BRS98] could produce very practical

7.2. Further Research 66

representations for finite fields. This would involve a thorough study of poly-
nomials over finite fields.

e The formulae for computing the elliptic curve group operation presented in this
thesis are directly derived from the classical geometric representation of the
curve. Alternative ways for computing scalar multiples of elliptic curve points
could perhaps be deduced by using more advanced methods from algebraic
geometry, or by embedding elliptic curves into some mathematical object with
a richer algebraic structure.

Appendix A

Field Theoretic Background

The basic definitions and facts about finite fields that are needed in the thesis are
presented in this appendix. For most parts, we will follow the representation given
in the book of Lidl and Niederreiter [LN97].

A.1 Basic Definitions

We begin by reviewing the concept of a group.
Definition A.1. A group is a set G with a binary operation o on G having the
properties:

o Associativity: for every a,b,c € G, ao(boc)=(aob)oc.

o Existence of identity: there is an element e € G such that coe = eoa =
a, for all a € GG.

o Ezistence of inverses: for each a € (7, there exists an element a~! € ¢ such

that coa ' =atoa=ce.

The group G is called abelian, if it also satisfies:
o Commutativity: for all a,b € G, aob="boa.

If GG is finite, then the number of its elements is called the order of GG, labeled #G.
Two groups (G1 and G4y are said to be isomorphic, denoted Gy ~ (5, if there exists
a bijection ¢ : i — G2 such that ¢(a o b) = ¢(a) o ¢(b), for all a,b € Gj.

It is easy to verify, that the identity element of a group is unique. In this thesis, two
kinds of notation for binary operations are used:

e Using the additive notation, the operation is denoted by the symbol +, and the
corresponding identity element is denoted by 0. Groups with this notation are
called additive groups and the operation is called “addition”.

67

A.1. Basic Definitions 68

e In multiplicative notation, no symbol for the operation is reserved. Instead, the
result of the operation with arguments @ and b is expressed simply as ab. The
identity element with respect to this operation is denoted by 1 and the word
“multiplication” will refer to this operation.

Definition A.2. Let GG be a (multiplicatively written) group and ¢ an element in
G. The set

(9)={d" | k ez}

is called the cyclic subgroup of G generated by g. The smallest positive integer n for
which ¢" = 1 (if exists) is called the order of g. If G = (g) for some g € GG, we say
that G is a cyclic group and that g is a generator of G.

We will need only one theorem from group theory. Its proof can be done easily using
cosets [Nic93], but we omit it for brevity.

Theorem A.3. Let H be subgroup of a finite group GG. Then #H divides #G.

The next consequence is obvious.

Corollary A.4. Let g be an element of a finite group G. Then #(g) divides #G.

Using the group terminology developed above, fields can be easily defined.

Definition A.5. A ring is a set K together with two binary operations called addi-
tion and multiplication, such that

e K is an abelian group with respect to addition.

e Multiplication is associative, i.e., a(bc) = (ab)c for all a,b,c € K.

e The two binary operations are connected to each other by distributivity; that
is, a(b+ ¢) = ab+ ac and (b+ ¢)a = ba + ca for all a,b,c € K.

A ring K is called a field, if it has the additional property:

e The set K\ {0} of nonzero elements in K forms an abelian group under multi-
plication.

Examples of fields include the rational numbers Q, the real numbers R and the
complex numbers C, having the familiar rules for addition and multiplication.

To identify fields sharing the same algebraic structure, we introduce the concept of
being isomorphic.

Definition A.6. Let K and L be rings. A mapping ¢ : K — L is said to be a
homomorphism, if it preserves addition and multiplication. That is,

¢la+b) = o(a) +¢(b) and ¢(ab) = ¢(a)¢(b)

for all @, b € K. The mapping ¢ is called an isomorphism, if in addition it is bijective.
In that case K and L are said to be isomorphic as rings. We indicate this by K ~ L.
Two fields are defined to be isomorphic, if they are isomorphic as rings.

A.1. Basic Definitions 69

Definition A.7. Let K be a field. A polynomial f(z) over K is a formal sum

n

flz)= Zaiwi, n >0, (A.1)

1=0

where the coefficients a; are elements of K, and z is a symbol not belonging to K,
called an indeterminate over K. The set of all polynomials over K is denoted by

Multiplication and addition of polynomials over a field K are defined the same way
as with the polynomials over the real numbers. One can verify by a routine calcu-
lation that using these operations, the polynomials over a field K form a ring. The
additive identity of this ring is the polynomial with all coefficients equaling zero.
This polynomial is called the zero polynomial.

Analogously, the degree of a nonzero polynomial f, labeled deg f, is the largest
power of z in (A.l) with nonzero coefficient. For the zero polynomial, we agree
that deg0 = —oc. In a monic polynomial, the largest power of 2 has coefficient 1.
Polynomials with degree < 0 are called constants.

Definition A.8. Let f and ¢ be polynomials over the field K. We say that ¢ divides
f, if there is a polynomial h € K[z] such that f = hg. A non-constant polynomial f €
K[z] is called irreducible over K, if the only polynomials dividing f and having lower
degree than f are the constants. The polynomials over K that are not irreducible
over K are called reducible.

The irreducible polynomials over K play the role of primes in K[z], as the next
theorem will guarantee. For a proof, consult any introductory textbook in abstract
algebra, for example [Nic93].

Theorem A.9. Any monic polynomial f € K[z] of positive degree can be written in
the form

r
F=11»
=0

where p; are distinct monic irreducible polynomials in K[z], and e; are positive inte-
gers. This factorization is unique apart from the order of the factors.

In the sequel, we will need yet another elementary result about polynomials, called
the division algorithm [Nic93].

Theorem A.10. Let f and g be polynomials over a field K. If g # 0, then there
are uniquely determined polynomials q and r in K[z] such that f = qg + r, where
degr < degg.

The unique remainder r of f divided by ¢ # 0 will subsequently be denoted r = f
mod g.

Definition A.11. In K[z], we say that f is equal to ¢ modulo p, if p divides f — g¢.
In that case we write f = ¢ (mod p).

A.2. Field Extensions 70

It is immediately seen that this relation is an equivalence relation. Thus, our poly-
nomial p has partitioned the ring K[z] into distinct equivalence classes, denoted by

[f1={9€Kz]|g=/f (modp)}.

The set of all equivalence classes is called the factor ring of K[z] modulo p and is
denoted by

Klz]/(p) ={[/1] f € K[z]}.

For two equivalence classes [f] and [¢] € K[z]/(p), define their sum and product as

1+ 9] =[f+4d]
[f1lg] = [f9g]-

A lengthy but straightforward check shows that these operations are well defined
and that the factor ring K[z]/(p) really is a ring. To verify the next important result
involves a little more work [Nic93].

Theorem A.12. The factor ring K[z]|/(p) is a field if and only if p is irreducible

over K.

Let us now take a closer look at the elements of the factor ring. Using the division
algorithm, every polynomial f € K[z] can be expressed as

f=aqp+r, qreKgz], degr <degp.

This implies that f = r (mod p) and thus, [f] = [r]. In addition, if 7 is another
polynomial over K with [f] = [r] and deg 7 < deg p, then p divides r — 7. This can be
true only if 7 = r, since deg(r — 7) < deg p. These observations lead to the following
theorem.

Theorem A.13. The set
S={r]|reKz], degr < degp}
forms a set of representatives of the factor ring K[z]/(p). That is, the map
¢: 853 re[r]eKz]/(p)

is bijection. The inverse of ¢ is calculated by the division algorithm, ¢~ 1([f]) = f
mod p.

A.2 Field Extensions

A useful method for obtaining finite fields is to start with small fields and use them
to construct larger fields extending the original ones.

Definition A.14. Let F be a field. A subset K of IF that is itself a field under the
operations of I, is called a subfield of F. Respectively, I is called an eztension of K.

A.2. Field Extensions 71

It is interesting to note that a subfield K of F can be interpreted as a field of scalars
for F, that is, F can be considered as a vector space over K.

Definition A.15. Let F be an extension field of K. If the dimension of the vector
space I over K is finite, F is called a finite extension of K. This dimension, denoted
by [F : K], is then called the degree of F over K.

The means to explore the structure of field extensions is to consider polynomials over
the underlying subfields.

Definition A.16. Let 6 belong to an extension field F of K. The element # is said
to be algebraic over K, if there exists a nonzero polynomial f in the ring K[z] such
that f(6) = 0. The extension field F is called algebraic over K, if all its elements are
algebraic over K.

To motivate our survey, we note that a great deal of extensions tend to be algebraic.

Theorem A.17. Every finite extension of K is algebraic over K.

Proof. Let F be a finite extension of K with degree n = [F : K] and let # be an
element of F. Now the set {1,6,...,60"} is linearly dependent over K; that is, there
exist scalars ag, . ..a, € K such that

agp+ a4+ -+ a,8" =0.

This means that 6 is indeed a root of a polynomial in K[z]. O

Assume that 6 is algebraic over a subfield K of F. Consider the set of polynomials

Z(0) = {f € K[2] \ {0} | f(6) = 0}

We see that this set is nonempty and that all polynomials in it have positive degree.
Thus, we can choose a polynomial m € Z(#) having least degree in Z(#). Without
loss of generality, we may assume it to be monic. In the next theorem, we will prove
that this m is uniquely determined.

Definition A.18. Let § € F be algebraic over the subfield K of F. The monic
polynomial m € K[z] of minimal degree such that m(6) = 0 is called the minimal
polynomial of @ over K. The degree of m is called the degree of 8 over K.

Theorem A.19. Let 8 € F be algebraic over K with a minimal polynomial m € K[z].
Then:

o The element 6 uniquely determines m.

e The polynomial m is irreducible in K[z].
Proof. To prove uniqueness, assume that 7 is another monic polynomial with m(8) =

0 and minimal degree deg m = deg m. Using the division algorithm of Theorem A.10,
we can write m = ¢gm + r in K[z], with degr < degm. Since now

r(0) = m(6) — q(8)m(0) = 0,

A.2. Field Extensions 72

r # 0 would contradict the assumption made on the degree of m. So m divides m
and the same argument shows that m also divides /. So, we can find ¢; and ¢y in
K[z] such that m = ¢ym and m = ¢am, or

(1 =qiq2)m=0.

Now a comparison of the leading coeflicients in the above equation shows that ¢;40 =
1. This show that ¢; and ¢y are constants, and recalling that m and m were monic,
we get m = m.

The irreducibility of m is seen by trying to write m as a product m = fg in K[z],
with deg f,degg < degm. Then the fact f(6)g(6) = m(#) = 0 implies that either
f(6) =0 or g(#) = 0, contradicting the definition of m. O

To describe how algebraic elements are connected with their minimal polynomials,
we need one more definition. Note that any nonempty intersection of subfields of a
given field I is again a subfield of F.

Definition A.20. Let K be a subfield of F and 6,...,6, € F. Then the field
constructed by intersecting all subfields of F that contain 64,...,8, and K is called
the subfield of F generated over K by the elements 6¢,...6,. We denote this by
K(6y,...,60,). If § € F, the extension K(¢) is called a simple extension of K in F.

We are now ready to formulate the key theorem of this section. The proof [Nic93],
though not complicated, is omitted, since it requires some auxiliary facts about rings
that are not required elsewhere in this work.

Theorem A.21. Let 0 be algebraic of degree n over K and let m be the minimal
polynomaal of 8 over K. Then:

o The map ¢ : Klz]/(m) 5 [f] — f(0) € K(#) is an isomorphism.
o [K(0) : K] = n and the set {1,0,...,0"1} is a basis of K(#) over K.

The previous theorem shows that an algebraic element from an extension field F of
the given field K can be used to construct a finite extension of K. However, what
we really want to do is to extend a given field K — without any a priori reference to
any fields containing K as a subfield.

Theorem A.22. Let p be an irreducible polynomial of degree n over the field K.
Then K has (after identifying K with one of its isomorphic copies) a simple extension
K(0) with 6 being a root of p.

Proof. Denote F = K[z]/(p). By Theorem A.12, F is a field. Also, it is easy to
see that the map ¢ : a — [a] mapping constant polynomials over K into K[z]/(p) is
one-to-one and preserves multiplication and addition on K. So we see that the fields
K and K = t(K) are isomorphic. It is also clear that K is a subfield of F.

Denote 6 = [z] € F. Assume p is given as

n

p(z) = Zaiwi, a; € K

1=0

A.3. Splitting Fields 73

Identifying coefficients a; as elements of]K, p can be interpreted to lay in]K[x] and
we may compute in F:

n n n

p(0) = Z ;0 = Z[a,][x]’ = [Z a;x'=[p]=[0]=0€F.

1=0 =0 =0

Write p = am, where o € K and m is monic. Since m(f) = 0, and m is irreducible
over K and so also over]K, it is seen that m is the minimal polynomial of over K.
By Theorem A.21, K(6) is a finite extension of K of degree n, and p(§) = 0. Since
isomorphic fields have exactly the same structure, we may identify K with K and
K(6) with K(6), and we are done. O

A.3 Splitting Fields

In this section, we want to extend the field K so that all polynomials over K have
maximal number of roots. To see what this means, the next two results are needed.

Lemma A.23. For nonzero f € Klz] and a € K, f(a) = 0 if and only if the
polynomial x — a divides f.

Proof. Use the division algorithm to write f(z) = (2 —a)q(z) +r(z), with r, ¢ € K[z]
and deg r < deg(z —a). Thus, r is a constant. By a direct substitution, this constant
is seen to be f(a), which proves our contention. O

Definition A.24. Let ¢ € K be a root of the polynomial f € K. The largest integer
k such that (z —a)* divides f is called the multiplicity of b. If k = 1, then b is called
a stmple root, otherwise b is said to be a multiple root.

Lemma A.25. In a field K, a polynomial f of degree n > 0 may have at most n
distinct roots.

Proof. Let aq,...,a, be the distinct roots of f in K. Now f is divisible by the irre-

ducible polynomial (z — a;), for i = 1,..., m. These affine polynomials occur in the
canonical factorization of f into irreducible polynomials according to Theorem A.9.
Hence, (z — ay) -+ (z — a,,) divides f. By comparing degrees, we get m < n. O

Now we can state what we want. For a polynomial f in K[z], we want an extension
of K where we can express f as a product of affine polynomials of degree 1. It is
clear that in such an extension field, f would have the maximum number of roots.

Definition A.26. Let f be a non-constant polynomial in K[z] and F an extension
field of K. We say that f splits in F, if f has a decomposition into linear factors over
F:

fl@y=alz—a1) - (zr—ay), a€K o« €T

The field F is a splitting field of f over K, if f splits in F and if moreover, F =
Ko, g, . ..y).

A 4. Finite Fields 74

The definition guarantees us that a splitting field F of f over K is economical in the
sense that no proper subfield of F that is an extension of K contains all the roots of
f (counting multiplicity). By first factoring f into irreducible polynomials and then
applying the extension procedure used in the proof of Theorem A.22, we see that
every polynomial has a splitting field. It can be proven [Nic93] that this splitting
field is unique up to isomorphism. The next theorem summarizes these observations.

Theorem A.27. Assume [is a polynomial of positive degree in K[xz]. Then there
is a splitting field of f over K. Furthermore, any two splitting fields of f over K are
isomorphic under an isomorphism which fizes K.

It is a remarkable fact that splitting fields for arbitrary collections of polynomials
over a field K exist. Especially, we may consider the field where all polynomials in
K[z] split.

Definition A.28. An extension K of the field K is called an algebraic closure of
K, if K is an algebraic extension of K with the property that every non-constant
polynomial in K[z] splits in K.

We conclude this section with the following deep theorem [Lan65, Section 7.2] about
fields. Since its proof contains considerable use of set theory (e.g., Zorn’s Lemma),
we omit it.

Theorem A.29. FEvery field K has an algebraic closure. Any two algebraic closures
of K are connected via an isomorphism fizing elements of K.

A.4 Finite Fields

A.4.1 Subfield Structure

Analogously with polynomials, we define modular arithmetic on Z, the field of inte-
gers. Let n be a fixed positive integer.

Definition A.30. We say that the integer a is equal to b modulo n, if n divides
b — a. We indicate this by writing « = b (mod n). The unique remainder 0 < r < n
after division of a by n # 0 is denoted r = ¢ mod n.

This relation is immediately seen to be an equivalence. We denote the equivalence
classes with respect to this relation by

[a]={b|b=2a (mod n)},

while Z /(n) stands for the collection of all equivalence classes. As with polynomials,
addition and multiplication in Z/(n) are defined by

[a] + [b] = [a + 0],

[a][b] = [ab]. (A.2)

A 4. Finite Fields 75

Denote by Z,, the set {0,1,...,n— 1}. For convenience, note that the mapping from
Z, into Z/(n) given by ¢ : a — [a] is bijective. Hence we can use ¢ to transfer the
structure of Z/(n) to Z,, by defining for a,b € Z,,:

a+b=¢""(g(a) + ¢(b)),

. (A.3)
ab= ¢ (p(a)¢(b)).

We summarize the basic results we need from elementary number theory [Ros88].

Theorem A.31. The set Z,, with the binary operations induced by formulae (A.2)
and (A.8) is a ring. Further, if p is a prime, then Z, is a field.

Let us now take a look at the structure of a general finite field F. Compute iteratively
the sequence a1 = 1, ag41 = arp + 1, k = 1,2, ... Since all a; can’t be distinct, there
are integers, k > [> 0 such that a; = ;. This implies that, for a positive integer
(k - l)a

(k—0Dl=1+---4+1=0.
N’
k-l

Definition A.32. Let F be a field. If F is finite, then the least positive integer p
with the property pl = 0 is called the characteristic of F, denoted by p = charF. If
nl # 0 for all n > 1, then the characteristic of F is defined to be 0.

It is easily seen that the characteristic p # 0 of a field is prime, since p = st with
1 < s,t < p implies that either sl or ¢1 equals zero, contradicting the minimality of
p. Also, we see that every subfield of the finite field F with charF = p contains 0 and
1, and hence by the closure of addition, the distinct elements 0,1,...,p — 1. This
set is easily seen to be isomorphic to Z,. We summarize this in the next theorem.

Theorem A.33. Let F be a finite field with characteristic p. Then F contains (an
isomorphic copy of) the field Z,, as a subfield.

We will reserve the notation F, for a finite field with ¢ elements. The next lemma is
useful.

Lemma A.34. Let a finite field F contain Fy as a subfield. Then ¢' = ¢ for some
positive integer m.

Proof. ¥y can be seen as a vector space over F,. Since F is finite, its dimension
m is necessarily finite. So every element of F can written as ki fi + -+ -+ ki fin,
k; € F,, with respect to some basis f; € F,/. Since each k; may have one of ¢ values,
the total number of elements in F is ¢™. O

Combining results A.33 and A.34 we get immediately the following important con-
sequence.

Corollary A.35. Let F be a finite field. Then F has p" elements, where the prime
p is the characteristic of ¥ and n = [F : F,)] is the degree of F over its subfield F,,
where F), is isomorphic to Z,,.

A 4. Finite Fields 76

The next lemma is needed in establishing the existence of finite fields.

Lemma A.36. Let F x be an extension of a field ;. Then the mapping o : v +— o4
15 a homomorphism that fizes elements of the subfield F,.

Proof. Since the group of nonzero elements of F, has ¢ — 1 elements, it is clear that
a9~ =1 for every nonzero a € F,. Hence, a? = « for all a € F,. The fact that
o preserves multiplication in F x is clear. For the sum, write using the binomial
theorem,

(0t 5)7 = zq: (f) o g,

1=0

A short computation shows that all binomial coefficients expect the first and the
last one above are multiplies of the characteristic of the underlying field. Hence, the
above equation reduces to

(a+ 8)7 = af 4+ 5.
|

Theorem A.37. For every prime p and every positive integer there exists a finite
field with ¢ = p" elements. Any two fields with the same number of elements are
isomorphic.

Proof. Consider the polynomial Q(z) = 2% — 2, which can be decomposed as

Q) = H(x — o), o €T,

From this it follows that if all of the «; above are not distinct, then Q(z) is divisible
by (z — «;)? for some i, i.e.,

Q(z) = (z — @i)*Qo(x)

for some Qo(z) € Fp[z]. Taking (formal) derivatives from both sides, the above
equation implies that z — «; divides Q'(z) in F,[2]. This is impossible, since Q'(z) =
qri~! — 1 = —1. Hence, Q(7) has ¢ distinct roots a,..., @, in F,. Denote this set
by K. By a direct check, we see that K is a subfield of Fp. Thus, K is a field with ¢
elements. To prove the uniqueness part, let F be a finite field with ¢ = p™ elements.
We know that F contains I, ~ Z, as a subfield. Consider again the polynomial
Q(z) = 29 — z over the field F,. By Lemma A.25, it has at most ¢ roots. But
Lemma A.36 tells that every element of F is a root of) and so we can split @) in F
as

Q) =[[= -).
a€ll

Thus F is a splitting field of Q(z) = 29 — z over F,. Taking Theorem A.27 into
account, we are done. O

Since all finite fields with ¢ elements are isomorphic, we may identify them all and
just speak of the finite field F,.

A 4. Finite Fields 77

Definition A.38. The finite field F, (or more rigorously, the equivalence class of
isomorphic fields with ¢ elements) is called the Galois field of order q.

Corollary A.39. The algebraic closure Fq of a finite field ¥, is given by
F,=|JF,.
k=1

Proof. By definition, Fq is an algebraic extension of IF,. For 0 € an denote its degree
by k(#). Since by Theorem A.21 we have [F,(0) : F,] = k(0), F,(0) is isomorphic to
F o). Thus we get,

F,= | J{0C U Fe0) = | Fpor C kUJFqk.
=1

b€l b€l 6efF,

On the other hand, if 6 € [J,—, Fx, then § € Fx for some k > 1. It is clear
that 6 belongs to the splitting field of its minimal polynomial over F,. Now by
Theorem A.29 (identifying isomorphic fields), we see that 6 € F,, hence

[j F,» CF,.
k=1

O

Corollary A.40. Let o be an element in some extension field of F,. Then o € F,
if and only if o9 = «.

Proof. The necessity condition follows directly from Lemma A.36. Assume o? = a.
Then a belongs to the splitting field of 29 — z over F,,. But as we saw in the proof
of Theorem A.37, this splitting field is FF,. O

Using the above machinery, the subfield structure of finite fields is quickly explored.

Theorem A.41. Let K be a subfield of Fpn. Then K has pt elements, where d is
a positive integer dividing n. Conversely, for every positive divisor d of n, there is
exactly one subfield of Fpn with p? elements.

Proof. Assume K is a subfield of F,». Then K also has characteristic p, and so may
be identified with F,. for some integer d > 0. By Lemma A.34, p" = (pd)e for some
positive integer e, i.e., d divides n. Conversely, if d divides n, it is quickly verified
that the polynomial 2P’ — z divides 2" — 2 in F,[2]. Thus F,» contains as a subfield
the splitting field of aP” — z, which has p? elements, as was seen in the proof of
Theorem A.37. If there were two or more distinct subfields of F,» with p? elements,

they would together contain more than p? roots of 2P — x, which contradicts the
result of Lemma A.25. O

As an example, the subfield structure of the field Fyive is sketched in Figure A.1.

A 4. Finite Fields 78

]F2176

Faie Fyss

NN

FQS]F244

]F24]F222
F22 FQM
I

Figure A.1: The subfield structure of Fyi7e

A.4.2 Primitive Elements

For a finite field F, we denote by F* the set of nonzero elements in F. By definition,
F* is a group. For a finite field, the group structure is simple.

Theorem A.42. For a finite field ¥y, the group F, s cyclic.

Proof. Let h = ¢ — 1. Since the case ¢ = 2 is trivial, we assume h > 2. Factor & into
primes

h=11»
el
where e; > 1 for ¢ in the (finite) index range /. For i € I, fix a nonzero element

a; € F, such that ah/pi

7

1. This can be done, since the polynomial 2"/Pi — 1 has
at most h/p; roots for i € I. Denote b; = a?/pil. We see that bf"l equals 1, while

e;—1

bfi # 1. Thus the multiplicative order of b, is p}* for i € I. We next show that
b=]b
el
generates F;. Assume that the order of b is a proper divisor of h. Then for some
J€el,

L="e =T (A.4)
el

A 4. Finite Fields 79

However, for i € I, i # j, p;' divides h/p;, which implies b?/pj =1 forevery ¢ € I,
i # j. From equation (A.4) we now see that b?/pj = 1. This contradicts the fact
that the order of b; is pjj. O

Definition A.43. A generator { of the multiplicative group F, is called a primitive
element of F,.

With the help of primitive elements, we can now easily establish the existence of
irreducible polynomials of any degree over finite fields.

Theorem A.44. For any finite field ¥, and any positive integer k there erists an
wrreducible polynomial over B, of degree k.

Proof. Consider the extension field F » of F,. Let { be a primitive element of F.
Since T, (£) contains 0 and all powers of ¢, we know that F,({) = F,x. With the
help of Theorems A.19 and A.21 we conclude that the minimal polynomial of £ is
irreducible and has degree k. O

A.4.3 The Trace Function

We shall introduce a mapping that characterizes the connection between a finite field
F» and its subfield F,.

Definition A.45. For a € F x, the trace of o over F, is defined by

1

TrFqk/Fq(O‘) =a+a?+ Oeq2 4+t aqk_)

If p is a prime, the trace of « over F), is called the absolute trace. When the context
is clear, we omit the subscript from the notation, and denote the absolute trace of «
simply by Tr(«).

The essence of the trace function is that it preserves the vector space structure of
F,x over F, and especially, it shrinks the field F into F,. The next theorem lists
these facts.

Theorem A.46. The trace Tr is a linear transformation from F onto F,. That
is, Tr(Fyr) = ¥y, and for any o, 3 € Fr and c € Fy:

o Tr(a+) = Tr(a) + Tr(9),

o Tr(ca)=cTr(a).
Proof. The linearity of trace follows immediately from Lemma A.36. Let o € Fx.

Recall that by the same lemma, the gth power map is a homomorphism. So we may
compute

A 4. Finite Fields 80

The Lemma A.36 further implies a?" = a, so we get (Tr(a))? = Tr(«). We conclude
that Tr(«) is a root of 29 — 2. By Theorem A.37 we know that the set of all roots of
z? —x is F,. Thus, Tr(F) C F,. To see that the trace is also onto, by linearity it is
enough to show that there is an element in F» with nonzero trace. But for o € Fx,
Tr(a) = 0 is equal to « being a root of the polynomial

k—1

R o A

k—1

Since this polynomial may have at most ¢ roots, we are done. O

Appendix B

Table of Notation

Notation Meaning See page
P? projective plane 10
(X:Y:2) point in P? 10

FE elliptic curve 11
E/K elliptic curve defined over K 11

O point at infinity 11
FE(K) K-rational points of F//K 12

A discriminant 15
J(E) Jj-invariant 15
E[n] n-torsion points of F/ 18

0] big-O 24

0 little-o 24
log logarithm to the base 2 25
log,, discrete logarithm to the base ¢ 25,27
L[n, c, Oé] O(e(c—l—o(l))(lnn)o‘(lnlnn)l_o‘) 925
L, nth roots of unity 27

In logarithm to the base e 28
Qp rationals with denominators not divisible by p 29
Fiors(Q) torsion subgroup of F(Q) 30
() bilinear form 35
i Kronecker delta 36

o binary operation 67
#G number of elements in G 67

~ isomorphism 67,68
{9) cyclic group generated by ¢ 68

Z integers 68

Q rational numbers 68

R real numbers 68

C complex numbers 68
deg degree of a polynomial 69
K[x] polynomial ring 69
K[z]/(p) factor ring of K[z] modulo p 69
mod n remainder after division by n 69, 74

~~

mod n) equality modulo n 69, 74

81

B. Table of Notation

82

degree of F over K

extension of K generated by 64, ..

simple extension of K
algebraic closure of K
characteristic

integers modulo n

finite field with ¢ elements
set of nonzero elements of F
trace

e

70
72
72
74
75
75
77
78
79

Bibliography

[ABMV93]

[AMOV91]

[Bea96]

[BRS98]

[cer97]

[Cop84]

[DHT76]

[EIG85]

[£ST91]

[GL92]

[Gor98]

[GPYT]

[GPYg]

G.B. Agnew, T. Beth, R.C. Mullin, and S.A. Vanstone. Arithmetic
operations in GF(2™). Journal of Cryptology, 6:3-13, 1993.

G.B. Agnew, R.C. Mullin, [.M. Onyszchuk, and S.A. Vanstone. An im-
plementation for a fast public-key cryptosystem. Journal of Cryptology,
3:63-79, 1991.

Dan Beauregard. Efficient algorithms for implementing elliptic curve
public-key schemes. Master’s thesis, Worcester Polytechnic Institute,

U.S., 1996.

I. Blake, R. Roth, and G. Seroussi. Efficient arithmetic in GF'(2")
through palindromic representation. Hewlett Packard Laboratories,
available from http://www.hpl.hp.com/, July 1998.

Remarks on the security of the elliptic curve cryptosystem, September
1997. Certicom, available from http://www.certicom.com/.

D. Coppersmith. Fast evaluation of logarithms in fields of characteristic
two. IEEE Transactions on Information Theory, 30:587-594, 1984.

W. Diffie and M. Hellman. New directions in cryptography. IEFEFE
Transactions on Information Theory, 22:644—654, 1976.

Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEFE Transactions on Information The-
ory, 31(4):469-472, 1985.

National Institute for Standards and Technology. A proposed federal
information processing standard for digital signature standard (DSS).
Technical report, FIPS, 1991.

S. Gao and H. Lenstra. Optimal normal bases. Designs, Codes and
Cryptography, 2:315-323, 1992.

D. M. Gordon. A survey of fast exponentiation methods. Journal of
Algorithms, 27:129-146, 1998.

Jorge Guajardo and Christof Paar. Efficient algorithms for elliptic curve
cryptosystems. In Crypto’97, pages 342-356. Springer—Verlag, 1997.

Jorge Guajardo and Christof Paar. Fast inversion in composite galois

fields GF((27)™). ISIT 1998, 1998.

83

BIBLIOGRAPHY 84

[Gua97]

[Har77]

[IEE9S]

[1T88]

[IMV90]

[Knu81]

[KO63]

[Kob87a]

[Kob87b]

[Kob91]

[Koc95]

[Lan65]
[Ler97]

[LL93]

[LN97]

[LW8S]

[LZ94]

[Mas91]

Jorge Guajardo. Efficient algorithms for elliptic curve cryptosystems.
Master’s thesis, Worcester Polytechnic Institute, U.S., 1997.

Robin Hartshorne. Algebraic Geometry. Springer—Verlag, first edition,
1977. ISBN 3-540-90244-9.

IEEE P1363 Working Group. Standard Specifications for Public Key
Cryptography, September 1998. Draft; latest version available from
http://www.grouper.ieee.org/groups/1363/.

Toshiya Itoh and Shigeo Tsujii. A fast algorithm for computing mul-
tiplicative inverses in G'F(2™) using normal bases. Information and
Computation, 78(3):171-177, 1988.

D. Jungnickel, A. Menezes, and S. A. Vanstone. On the number of
self-dual bases of G F(¢") over GF(q). Proceedings of American Mathe-
matical Society, 109:23-29, 1990.

D. E. Knuth. Seminumerical Algorithms, volume II of The Art of Com-
puter Programming. Addison—Wesley, second edition, 1981.

A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on
automata. Sov. Phys.-Dokl., 7(7):595-596, 1963.

Neal Koblitz. A Course in Number Theory and Cryptography. Springer—
Verlag, second edition, 1987. ISBN 3-540-94293-9.

Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computa-
tion, 48(177):203-209, 1987.

Neal Koblitz. Elliptic curve implementation of zero-knowledge blobs.
Journal of Cryptology, 4:207-213, 1991.

C. K. Koc. Analysis of sliding window techniques for exponentiation.
Computers and Mathematics with Applications, 30(10):17-24, 1995.

Serge Lang. Algebra. Addison—Wesley, fourth edition, 1965.

Reynald Lercier. Algorithmique Des Courbes Elliptiques Dans Les Corps
Finis. PhD thesis, Ecole Polytechnique, France, 1997.

A. Lenstra and H. Lenstra, editors. The Development of the Number
Field Steve. Number 1554 in Lecture Notes in Mathematics. Springer—
Verlag, 1993.

R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press,
second edition, 1997.

A. Lempel and M.J. Weinberger. Self-complementary normal bases in
finite fields. SIAM Journal of Discrete Mathematics, 1:193-198, 1988.

G. Lay and H. Zimmer. Constructing elliptic curves with given group or-
der over finite fields. In Algorithmic Number Theory: First International
Symposium, volume 877, pages 250-263. Springer—Verlag, 1994.

Edoardo D. Mastrovito. VLSI Architectures for Computations in Galois
Fields. PhD thesis, Link6ping University, Sweden, 1991.

BIBLIOGRAPHY 85

[MBG+93]

[Men93]

[Mil86a]

[Mil86b]

[MO83]

[MO90]

[Mor91]

[MOV93]

[MOVW89]

[MV90]

[MV93]

[MvOV97]

[MW98]

[Nic93]

[0d195]

[Paa96]

A. Menezes, 1. Blake, XuHong Gao, R. C. Mullin, S. A. Vanstone, and
Tomik Yaghoobian. Applications of Finite Fields. Kluwer Academic
Publishers, first edition, 1993. ISBN 0-7923-9282-5.

A. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic
Publishers, first edition, 1993. ISBN 0-7923-9368-6.

Victor S. Miller. Short programs for functions on curves. Unpublished
manuscript, 1986.

Victor S. Miller. Use of elliptic curves in cryptography. In Advances in
Cryptology — Crypto 85, pages 417-426. Springer—Verlag, 1986.

J. Massey and J. Omura. Computational Method and Apparatus for
Finite Field Arithmetic, June 1983. European Patent No. 0080528.

F. Morain and Jorge Olivos. Speeding up computations on an elliptic
curve using addition—subtraction chains. Theoretical Informatics and
Applications, 24(6):531-433, 1990.

F. Morain. Building cyclic elliptic curves modulo large primes. In
Advances in Cryptology — Furocrypt ’91, volume 547, pages 328-336.
Springer—Verlag, 1991.

A. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic curve
logarithms to logarithms in a finite field. IEEE Transactions on Infor-
mation Theory, 39:1639-1646, 1993.

R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone, and R. Wilson. Optimal
normal bases in GF(p"). Discrete Applied Mathematics, 22:149-161,
1989.

A. Menezes and S.A. Vanstone. The implementation of elliptic curve
cryptosystems. In Advances in Cryptology — Auscrypt '90, pages 2—13,
1990.

A. Menezes and S.A. Vanstone. Elliptic curve cryptosystems and their
implementation. Journal of Cryptography, 6:209-224, 1993.

A. Menezes, P.C. van Qorschott, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, first edition, 1997.

Ueli Maurer and Stefan Wolf. Lower bounds on generic algorithms
in groups. In Advances in Cryptology — Furocrypt '98, pages 72-84.
Springer—Verlag, 1998.

W. Keith Nicholson. Intoduction to Abstract Algebra. PWS Publishing
Company, first edition, 1993. ISBN 0-534-93189-8.

A. Odlyzko. The future of integer factorization. CryptoBytes — The
Technical Newsletter of RSA Laboratories, 1(2):5-12, 1995. Also avail-
able from http://www.rsa.com/.

Christof Paar. A new architecture for a parallel finite field multiplier
with low complexity based on composite fields. IEEE Transactions on
Computers, 45(7):856-861, 1996.

BIBLIOGRAPHY 86

[PH78]

[Pol78]

[PSR7]

[Ros88]

[Ros98]

[RSATS]

[SA97]

[Sch85]

[Sch96]

[Sem98]

[Ser98]

[Si86]

[Si198]

[Sim91]

[SO0S95]

[3598]

[Sti95]

S. Pohlig and M. Hellman. An improved algorithm for computing log-
arithms over GF(p). IEEE Transactions on Information Theory, 24:
106-110, 1978.

J. Pollard. Monte carlo methods for index computation mod p. Mathe-
matics of Computation, 32:918-924, 1978.

Christof Paar and Pedro Soria-Rodriguez. Fast arithmetic architectures
for public-key algorithms over galois fields G F'((2")™). In Eurocrypt 97,
pages 363-378. Springer—Verlag, 1997.

Kenneth Rosen. Elementary Number Theory and Its Applications. Ad-
dison—Wesley, second edition, 1988. ISBN 1-201-11958-7.

Martin Rosner. Elliptic curve cryptosystems on reconfigurable hard-
ware. Master’s thesis, Worcester Polytechnic Institute, U.S., 1998.

Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communi-
cations of the ACM, 21(2):120-126, 1978.

T. Satoh and K. Araki. Fermat quotients and the polynomial time
discrete log algorithm for anomalous elliptic curves. Preprint; available
from http://www.ams.org/, October 1997.

R. Schoof. Elliptic curves over finite fields and the computation of square
roots mod p. Mathematics of Computation, 44:483-494, 1985.

Bruce Schneier. Applied Cryptograhpy. John Wiley & Sons, Inc., second
edition, 1996. ISBN 0-471-11709-9.

I. Semaev. Evaluation of discrete logarithms in a group of p-torsion
points of an elliptic curve in characteristic p. Mathematics of Computa-
tion, 67:353-356, 1998.

G. Seroussi. Compact representation of elliptic curve points over Fon.
Available from http://www.hpl.hp.com/, 1998.

Joseph H. Silverman. The Arithmetic of FElliptic Curves. Springer—
Verlag, first edition, 1986. ISBN 3-540-96203-4.

Joseph H. Silverman. The xedni calculus and the elliptic curve discrete
logarithm problem. Preprint, August 1998.

G. Simmons. Contemporary cryptology: The science of information
integrity. IEFE Press, 1991.

R. Schréppel, H. Orman, S. O’Malley, and O. Spatscheck. Fast key
exhange with elliptic curve systems. In Advances in Cryptology, Pro-
ceedings Crypto’95, pages 43-56. Springer—Verlag, 1995.

Joseph H. Silverman and Joe Suzuki. Elliptic curve discrete logarithms
and the index calculus. AsiaCrypt ’98, to appear, 1998.

Douglas R. Stinson. Cryptography — Theory and Practice. CRC Press,
first edition, 1995. ISBN 0-8493-8521-0.

BIBLIOGRAPHY 87

[WBVT96] Erik De Win, Antoon Bosselaers, Servaas Vandenberghe, Peter De
Gersem, and Joos Vandewalle. A fast software implementation for arith-
metic operations in G F'(2"). In Advances in Cryptology — Asiacrypt ’96,
pages 65—76. Springer—Verlag, 1996.

[Wil95] Andrew Wiles. Modular elliptic curves and fermat’s last theorem. An-
nals of Mathematics, 141(3):443-551, 1995.

[WT95] Andrew Wiles and Richard Taylor. Ring-theoretic properties of certain
hecke algebras. Annals of Mathematics, 141(3):553-572, 1995.

