University of Jyväskylä Department of Mathematics and Statistics MATA280 Foundations of stochastics Exercise 1 4–5.11.2013 L. Leskelä / M. Kuronen

- **1.1** Elementary properties of probability measures. Prove that any probability measure P on a countable sample space satisfies:
 - (a) $P(\emptyset) = 0$,
 - (b) $P(A^c) = 1 P(A),$
 - (c) $P(A \cup B) = P(A) + P(B) P(A \cap B),$
 - (d) $0 \le P(A) \le 1$,
 - (e) $A \subset B \implies P(A) \le P(B)$,
 - (f) $P(B \setminus A) = P(B) P(A \cap B).$

1.2 Uniform distribution of a finite and infinite set.

- (a) Show that the uniform distribution $P(\omega) = \frac{1}{|\Omega|}$ of a finite set Ω is a probability function (probability mass function).
- (b) Let us model a 5-card poker hand using the uniform distribution of the set $\Omega = K^{(5)}$ where $K^{(5)} = \{A \subset K : |A| = 5\}$ is set of 5-element subset of the deck $K = \{1, 2, ..., 52\}$. Compute the probability $P(\omega)$ of the sample $\omega = \{1, 2, 3, 4, 5\}$.
- (c) We wish to pick a random number from the set $\mathbb{N} = \{1, 2, ...\}$ so that the probability of every outcome is equally big. Is it possible to perform such a choice? What is then the probability of obtaining number 7?
- **1.3** Product of uniform distributions. Let the probability function μ_1 be the uniform distribution of the finite set S_1 , and let the probability function μ_2 be the uniform distribution of the finite set S_2 . Is $\mu_1 \times \mu_2$ then also a uniform distribution? Prove the statement true or provide a counterexample to show it false.

Continues on the next page...

1.4 Taxonomy of randomness. Browse through David Aldous's article at

http://www.stat.berkeley.edu/~aldous/Real-World/100.html

on examples of perceiving randomness in the real world.

- (a) Propose 3–5 categorizes in which different manifestations of randomness can be characterized. You are free to set up your own categorization criteria.
- (b) Do you think it possible to categorize Aldous's list into 3–5 categories?
- (c) If not, explain why.
- **1.5** Gibbs distribution. Let H be a positive (i.e. $H \ge 0$) function on a finite set $\Omega = \{\omega_1, \ldots, \omega_n\}$ and $\beta \ge 0$. Define

$$P(\omega) = Z_{\beta}^{-1} e^{-\beta H(\omega)}, \quad \omega \in \Omega,$$

where $Z_{\beta} = \sum_{\omega \in \Omega} e^{-\beta H(\omega)}$. The probability function P on is the *Gibbs distribution* induced by the energy function H. The number $1/\beta$ corresponds to temperature in many models of statistical physics.

- (a) Prove that P if a probability function on Ω .
- (b) What kind of Gibbs distribution is obtained by taking $\beta = 0$?
- (c) Assume that the function H has a unique minimum at the point ω_1 and a unique maximum at the point ω_n . Examine how the probability function P as $\beta \to \infty$.