**4.1** Indicator random variable. The indicator of an event  $A \subset \Omega$  in a discrete probability space  $(\Omega, P)$  is the  $\{0, 1\}$ -valued random variable

$$1_A(\omega) = \begin{cases} 1, & \text{when } \omega \in A, \\ 0 & \text{else.} \end{cases}$$

- (a) Find out the distribution of  $1_A$ .
- (b) Compute the expectation and variance of  $1_A$ .
- (c) Find out the distribution of  $Z = 1_{A_1} + \cdots + 1_{A_n}$  when we assume that  $1_{A_1}, 1_{A_2}, \ldots, 1_{A_n}$  are independent.
- (d) Compute the expectation and variance of Z.
- **4.2** Valtteri's roulette game. Valtteri plays 300 rounds of roulette by betting one euro at each round to small numbers (1–18). Valtteri's initial capital equals  $V_0 = 300$  euros. Denote the value of Valtteri's game account after t rounds by  $V_t$ .
  - (a) Let  $U_1, \ldots, U_{300}$  be independent uniformly distributed random variables in  $S = \{0, 1, \ldots, 36\}$ . Define a function f such that the game account can be represented by,

$$V_t = V_0 + \sum_{s=1}^t f(U_s).$$

- (b) What is the state space of the random variable  $V_{300}$ ?
- (c) Using part a) compute the expectation  $\mathbb{E}V_{300}$ .
- (d) Let  $\theta_s$  be the indicator of the event  $\{U_s \in [1, 18]\}$ . Explain why  $\theta_s$  follows a Ber(p) distribution for some p and find out the value of p.
- (e) Define a function g such that the game account can be represented as

$$V_t = V_0 + g\left(\sum_{s=1}^t \theta_s\right).$$

(f) Using part e) prove that

$$\mathbb{P}\left(\frac{V_{300} - V_0}{V_0} \ge 0.1\right) = \sum_{k=j}^{300} {300 \choose k} p^k (1-p)^{300-k}$$

for some value of j and find out this value.

- 4.3 Nico's roulette game. Nico plays 300 rounds of roulette by betting one euro at each round to the number 28. Nico's initial capital equals  $V_0 = 300$  euros. Answer for Nico's part to the same questions as in Problem 4.2, when in part 4.2 d) the definition of  $\theta_s$  has been updated to correspond to the indicator of the event  $\{U_s = 28\}$ .
- **4.4** Gambler's ruin. Heikki goes to a casino with purpose of increasing his initial capital to the level of n EUR in a game where each round yields +1 EUR with probability p and -1 EUR with probability q = 1 p. Heikki's initial capital equals i EUR and he has decided to play unit he either reaches his target or loses his money. Let  $r_i$  be the probability that the game ends successfully for Heikki. During the lecture we found out that  $r_0 = 0$ ,  $r_n = 1$  and

$$r_i = pr_{i+1} + qr_{i-1}$$

for all i = 1, ..., n - 1. Solve  $r_i$ .

- **4.5** Law of large number does not always hold. Consider two independent collections of random variables such that
  - $\{X_1, X_2, \dots\}$  are independent and identically distributed, and  $\mathbb{E}(X_1) = 1$ .
  - $\{Y_1, Y_2, \dots\}$  are independent and identically distributed, and  $\mathbb{E}(Y_1) = 2$ .

Let us first flip a coin and then define

$$S_n = \begin{cases} X_1 + X_2 + \dots + X_n, & \text{if we get heads,} \\ Y_1 + Y_2 + \dots + Y_n, & \text{if we get tails.} \end{cases}$$

Prove that

- (a)  $\mathbb{E}(S_n/n) = 3/2$ .
- (b)  $\mathbb{P}(|S_n/n 3/2| > 1/4)$  does not converge to zero as n grows.
- (c) Is the above observation in conflict with the law of large numbers?