- **5.1** General properties of probability generating functions. Let X be a \mathbb{Z}_+ -valued random number and G_X its probability generating function.
 - (a) Explain why G_X is always defined on the set [-1, 1].
 - (b) Prove that G_X maps the interval [-1, 1] to itself.
 - (c) Compute $G_X(0)$ and $G_X(1)$.
 - (d) Can you say what $G_X(-1)$ tells about the distribution of X?
- **5.2** Poisson distribution. Let X be a Poisson-distributed random number with parameter $\lambda > 0$, so that

$$\mathbb{P}(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, \dots$$

- (a) Compute the probability generating function G_X of X.
- (b) For which values of $t G_X(t)$ is defined?
- (c) Compute the expectation of X directly from the distribution of X.
- (d) Compute the expectation of X using G_X .
- (e) Which method was easier?
- (f) Compute the variance of X.
- **5.3** Number of grandchildren. Mrs Galton gets N children during her lifetime, where

$$\mathbb{P}(N=k) = (1-p)^k p, \quad k = 0, 1, 2, \dots$$

and $p \in (0, 1)$. (We say that N follows a geometric distribution on the set $\{0, 1, 2, ... \}$.) Assume that each child, independently of the others, produces a random number of children which has the same distribution as N. Compute

- (a) the probability generating function and expectation of the number of children,
- (b) the probability generating function and expectation of the number of grandchildren,
- (c) the probability that Mrs Galton gets at least two grandchildren.

Continues on the next page...

5.4 Doubly stochastic Poisson distribution. Consider a random number $N : \Omega \to \mathbb{Z}_+$, the distribution of which depends on an external random variable $L : \Omega \to \mathbb{Z}_+$ so that N has Poisson distribution with parameter ℓ when L equals ℓ . That is,

$$\mathbb{P}(N=k \mid L=\ell) = e^{-\ell} \frac{\ell^k}{k!}, \quad k \in \mathbb{Z}_+.$$

- (a) Show that $\mathbb{P}(N=k) = \mathbb{E}e^{-L}\frac{L^k}{k!}$ for all $k \in \mathbb{Z}_+$.
- (b) Compute $\mathbb{E}N$ when we assume that $\mathbb{E}L = \log 2$.
- **5.5** Branching process with many initial individuals. The branching process generated by one initial individuals is recursively defined by $Z_0 = 1$ and

$$Z_n = \sum_{i=1}^{Z_{n-1}} X_{n,i}, \quad n = 1, 2, \dots,$$

where the random numbers $(X_{n,i})_{i\geq 1,n\geq 1}$ are independent and follow the same distribution as a generic \mathbb{Z}_+ -valued random number X. During the lectures it was shown that the probability generating function of Z_n can be computed according to

$$G_{Z_n}(t) = G_X \circ \cdots \circ G_X(t), \quad n \ge 1,$$

where on the right we have the probability generating function of X iterated with itself n times.

- (a) With the help of the above result, derive an expression for the probability generating function of Z_n in the generalized case where the initial population has three individuals who will produce offspring independently of each other, as in a population with one initial individuals.
- (b) Can you generalize the result in part a) to the case where the initial population has a random number Y individuals?