2.1 Simulation of an arbitrary random number. Let X be a random real number with cumulative distribution function $F(x) = \mathbb{P}(X \leq x)$. Define the left-continuous inverse of F by

$$
F^{\leftarrow}(y) = \inf\{x \in \mathbb{R} : F(x) \ge y\}, \quad y \in (0, 1).
$$

- (a) Show that $F^{\leftarrow}(y) \leq x$ if and only if $y \leq F(x)$.
- (b) Show that $F^{\leftarrow}(U)$ is a random variable with the same distribution as X.
- (c) Compute F and F^{\leftarrow} for the random variable X which assumes value 1 with probability μ_1 and value 2 with probability $\mu_2 = 1 - \mu_1$.
- **2.2** Update functions are not unique. [H \ddot{a} g02, Ex. 3.2] Show that we get a valid update function for the Gothenburg weather transition matrix $P = \begin{pmatrix} 0.75 & 0.25 \\ 0.25 & 0.75 \end{pmatrix}$ by defining

$$
\phi(s_1, x) = \begin{cases} s_1 & \text{for } x \in [0, 0.75), \\ s_2 & \text{for } x \in [0.75, 1], \end{cases} \qquad \phi(s_2, x) = \begin{cases} s_2 & \text{for } x \in [0, 0.75), \\ s_1 & \text{for } x \in [0.75, 1]. \end{cases}
$$

Compare this with the update function in [Häg02, Example 3.1].

- **2.3** Sojourn time in a state. Consider a Markov chain (X_n) in $S = \{1, 2, \ldots, k\}$ having a nonrandom initial state $i \in S$ and a transition matrix $P = (P_{i,j})_{i,j \in S}$ such that $P_{i,i} < 1$. Denote the sojourn time of (X_n) at state i by $T = \min\{n \geq 1 : X_n \neq i\}.$
	- (a) Compute the probability $\mathbb{P}(X_1 = i, X_2 = i)$.
	- (b) Compute the probability $\mathbb{P}(X_1 = i, X_2 = i, X_3 \neq i)$.
	- (c) Compute the probability $\mathbb{P}(T=n)$ for $n=0,1,2,...$ Can you identify the probability distribution of T from this formula?

Continues on the next page...

- **2.4** Partially observed Markov chain. Let (X_n) be a Markov chain on $S = \{1, 2, ..., k\}$ with initial distribution μ and transition matrix P. Define $Y_n = X_{rn}$, where r is a positive integer. Show that (Y_n) is a Markov chain with initial distribution μ and transition matrix P^r . (**Hint**: Recall Exercise 1.5 last week.)
- 2.5 Markov chain on an infinite state space. A Markov chain on a countably infinite state space S can be modeled with a transition matrix $(P_{i,j})_{i,j\in S}$ such that $P_{i,j}\geq 0$ for all i, j and $\sum_{j \in S} P_{i,j} = 1$ for all i. Given an a probability vector μ on S, define μP by

$$
(\mu P)_j = \sum_{i \in S} \mu_i P_{i,j}, \quad j \in S.
$$

- (a) Show that the sum on right side above is finite for all i .
- (b) Show that $\mu \mapsto \mu P$ maps probability vectors on S to probability vectors on S.

References

[Häg02] Olle Häggström. Finite Markov chains and Algorithmic Applications. Cambridge University Press, 2002.