1.1 *Discrete random variables.* Let P be the uniform distribution in the finite set Ω = $\{1, 2, \ldots, n\}$, that is,

$$
P(A) = n^{-1}|A|, \quad A \subset \Omega,
$$

where $|A|$ is the number of elements in A. Define the random variables U and V by $U(\omega) = \omega$ and $X = U^2$. Compute for U and X:

- (a) probability mass function,
- (b) distribution,
- (c) expectation.
- **1.2** *Continuous random variables.* Let P the uniform distribution on (0, 1), that is,

$$
P(A) = \int_A dx
$$

for all (Borel) measurable $A \subset (0,1)$. Define the random variables U and Y by $U(\omega) = \omega$ and $Y = -(1/\lambda) \log U$, where $\lambda > 0$. Compute for U and X:

- (a) cumulative distribution function,
- (b) probability density function,
- (c) distribution,
- (d) expectation.

1.3 *Sum estimate and distribution.*

(a) Prove that for arbitrary events A_1, A_2, \ldots :

$$
P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i).
$$

(b) Let $X = (X_1, \ldots, X_d)$ be a random vector on the probability space (Ω, \mathcal{F}, P) . Show that the distribution of X ,

$$
P_X(B) = P(X \in B), \quad B \in \mathcal{B}(\mathbb{R}^d),
$$

is a probability measure on \mathbb{R}^d .

Continues on next page. . .

- **1.4** *Independent uniform random variables.* Let U_1 and U_2 be independent uniformly distributed random variables on $(0, 1)$, so that the distribution of both random variables is the uniform distribution on $(0, 1)$ as in Exercise 1.2. Compute the cumulative distribution function, probability density function, and the distribution for
	- (a) U_1U_2 ,
	- (b) U_1/U_2 .
- **1.5** *Mappings of independent random variables.* Consider a random sequence (X_1, X_2, \ldots) , where $X_i : \Omega \to \mathbb{R}^{d_i}$. Prove that the following statements are equivalent:
	- Random vectors X_1, X_2, \ldots are independent.
	- Random variables $f_1(X_1), f_2(X_2), \ldots$ are independent for all measurable f_i : $\mathbb{R}^{d_i} \to \mathbb{R}$.