- **3.1** Continuity of linear combinations. Let (X_n) and (Y_n) be random sequences in \mathbb{R}^d and $a, b \in \mathbb{R}$. Which of the following statements are true:
	- (a) $X_n \stackrel{\text{a.s.}}{\rightarrow} X$ and $Y_n \stackrel{\text{a.s.}}{\rightarrow} Y \implies aX_n + bY_n \stackrel{\text{a.s.}}{\rightarrow} aX + bY$.
	- (b) $X_n \stackrel{P}{\to} X$ and $Y_n \stackrel{P}{\to} Y \implies aX_n + bY_n \stackrel{P}{\to} aX + bY$.
	- (c) $X_n \stackrel{L^p}{\to} X$ and $Y_n \stackrel{L^p}{\to} Y \implies aX_n + bY_n \stackrel{L^p}{\to} aX + bY$.
- **3.2** Integrability of a positive random variable. Let X be a positive random variable with distribution μ , so that the probability measure μ satisfies $\mu(\mathbb{R}_+) = 1$.
	- (a) Show that $EX < \infty$ if and only if $\sum_{n\geq 0} P(X > n) < \infty$. (**Hint**: Write $P(X > n) = \int_{\mathbb{R}_+} 1(x > n) \mu(dx)$, where $1(x > n)$ is a convenient alternative way to write $1_{(n,\infty)}(x)$.)
	- (b) Can you interpret the sum $\sum_{n\geq 0} P(X > n)$ as the expectation of some random variable?
- **3.3** Growth speed of a random sequence. Let $\xi, \xi_1, \xi_2, \ldots$ be independent and identically distributed positive random variables. Denote $\xi_n = O(n^{\beta})$ if there exists a number c such that $\xi_n \leq cn^{\beta}$ for all n from some n_0 onwards.
	- (a) Show that for all $\alpha > 0$ and $c > 0$, the following are equivalent:
		- $\xi_n \leq cn^{1/\alpha}$ eventually (from some index onwards) almost surely.
		- $E\xi^{\alpha} < \infty$.

(Hint: Exercise 3.2 and Borel–Cantelli.)

- (b) Show that if $E\xi^{\alpha} < \infty$, then $\xi_n = O(n^{1/\alpha})$ almost surely.
- (c) Show that if $E\xi^{\alpha} = \infty$, then $\limsup_{n \to \infty} n^{-1/\alpha}\xi_n = \infty$ almost surely.
- (d) Based on the above findings, can you conclude something on the behavior of the record sequence $M_n = \max(\xi_1, \ldots, \xi_n)$ for large n?
- **3.4** Almost sure convergence is also stochastic. Let (X_n) be a random sequence in \mathbb{R}^d . Prove the following theorem [Sottinen, Theorem 7.3.2(i)]: If $X_n \to X$ almost surely, then $X_n \to X$ in probability.
- **3.5** Almost sure dominated convergence. Show that Lebesgue's dominated convergence theorem [Sottinen, Lause 4.2.1(v)] is valid, when we only assume that $X_n \stackrel{a.s.}{\rightarrow} X$ and $|X_n| \leq Y$ almost surely for all n, where Y is an integrable random variable.